Question

In: Math

Ex. 2.40 European roulette. The game of European roulette involves spinning a wheel with 37 slots:...

Ex. 2.40 European roulette.

The game of European roulette involves spinning a wheel with 37 slots: 18 red, 18 black, and 1 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their colour, they double their money. If it lands on another colour, they lose their money.

(a) Suppose you play roulette and bet $3 on a single round. What is the expected value and standard deviation of your total winnings?

(b) Suppose you bet $1 in three different rounds. What is the expected value and standard deviation of your total winnings?

(c) How do your answers to parts (a) and (b) compare? What does this say about the riskiness of the two games?

Ex. 2.34 Ace of clubs wins.

Consider the following card game with a well-shuffled deck of cards. If you draw a red card, you win nothing. If you get a spade, you win $5. For any club, you win $10 plus an extra $20 for the ace of clubs.

(a) Create a probability model for the amount you win at this game. Also, find the expected winnings for a single game and the standard deviation of the winnings.

(b) What is the maximum amount you would be willing to pay to play this game? Explain your reasoning.

Solutions

Expert Solution


Related Solutions

The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and...
The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance of capturing the ball. (a) You watch a roulette wheel spin 4 consecutive times and the ball lands on a black slot each time. What is the probability that the ball will land on a block slot on the next spin?...
In the game of roulette, there is a wheel with 37 slots numbered with the integers...
In the game of roulette, there is a wheel with 37 slots numbered with the integers from 0 to 36, inclusive. A player bets $3 and chooses a number. The wheel is spun and a ball rolls on the wheel. If the ball lands in the slot showing the chosen number, the player receives $3 plus 100$. Otherwise, the player loses the $3 bet. Assume that all numbers are equally likely. Determine the variance of the gain or loss per...
Roulette is a casino game that involves spinning a ball on a wheel that is marked...
Roulette is a casino game that involves spinning a ball on a wheel that is marked with numbered squares that are red, black, or green. Half of the numbers 1-36 are red and half are black, 0 and 00 are green. Each number occurs only once on the wheel. The most common bets are to bet on a single number or to bet on a color (red or black). The pocket in which the ball lands on the wheel determines...
Roulette is a casino game that involves spinning a ball on a wheel that is marked...
Roulette is a casino game that involves spinning a ball on a wheel that is marked with numbered squares that are red, black or green. Half of the numbers 1-36 are colored red and half are black. The numbers 0 and 00 are green. Each number occurs only once on the wheel. We can make many different types of bets but the simplest are to bet on a number or on a color (either red or black). These are the...
In the game of​ roulette, a wheel consists of 38 slots numbered​ 0, 00,​ 1, 2,...,...
In the game of​ roulette, a wheel consists of 38 slots numbered​ 0, 00,​ 1, 2,..., 36. To play the​ game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots. If the number of the slot the ball falls into matches the number you​ selected, you win​ $35; otherwise you lose​ $1. Complete parts ​(a) through ​(g) below (a) Construct a probability distribution for the random variable​ X, the winnings...
The roulette wheel has 38 slots. Two of the slots are green, 18 are red, and...
The roulette wheel has 38 slots. Two of the slots are green, 18 are red, and 18 are black. A ball lands at random in one of the slots. A casino offers the following game. Pay $1 to enter the game. If the ball falls on black, you don’t get anything, if the ball falls on green, you get a dollar, if the ball falls on red, you get $1.95. Bob plays this game 100 times, and of course, the...
Task 1: Roulette wheel simulation A roulette wheel has 38 slots of which 18 are red,...
Task 1: Roulette wheel simulation A roulette wheel has 38 slots of which 18 are red, 18 are black, and 2 are green. If a ball spun on to the wheel stops on the color a player bets, the player wins. Consider a player betting on red. Winning streaks follow a Geometric(p = 20/38) distribution in which we look for the number of red spins in a row until the first black or green. Use the derivation of the Geometric...
A roulette wheel has 38 slots, numbered 0, 00, and 1 to 36. The slots 0...
A roulette wheel has 38 slots, numbered 0, 00, and 1 to 36. The slots 0 and 00 are colored green, 18 of the others are red, and 18 are black.The dealer spins the wheel and at the same time rolls a small ball along the wheel in the opposite direction. The wheel is carefully balanced so that the ball is equally likely to land in any slot when the wheel slows. Gamblers can bet on various combinations of numbers...
STRAIGHT FROM THE BOOK Roulette In the casino game of roulette there is a wheel with...
STRAIGHT FROM THE BOOK Roulette In the casino game of roulette there is a wheel with 19 black slots, 19 red slots, and 2 green slots. In the game, a ball is rolled around a spinning wheel and it lands in one of the slots. It is assumed that each slot has the same probability of getting the ball. This results in the table of probabilities below. Fair Table Probabilities   black     red     green   Probability   19/40 19/40 2/40 You watch the...
In the popular American game of roulette, the roulette wheel has 38 spaces that are numbered...
In the popular American game of roulette, the roulette wheel has 38 spaces that are numbered 0, 00, and 1 through 36, 0. Find the probability of getting the following: a) A number that is less than 15, not counting 0 and 00; b) A number that is a multiple of 3 or 5, not counting 0 and 00; c) An odd number that is less than 15, not counting 0 and 00; d) A number that is between 1...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT