In: Finance
Consider the following information of Petronas Bond
| Description | Petronas Bond |
| Face value | RM 1000 |
| Maturity | 5 YEARS |
| Coupon rate | 9.00% per annum |
| Compounding (m) | Semiannually |
a) Assuming annual interest rate is 6.00% on the bond, calculate
the value of the bond.
b) Illustrate the discounting cash flows using the Macaulay
Duration Schedule.
c) Compute
i. Modified duration.
ii. Convexity
-
| a. Value of the bond= |
| (PV of semi-annual coupon cash flows+ PV of FV to be recd.at maturity)both discounted at the semi-annual interest rate |
| ie. ((1000*0.045)*(1-1.03^-10)/0.03)+(1000/1.03^10) |
| 1127.95 |
| b.Calculation of Macaulay Duration | |||||
| Coupon | 9%/2=4.5% | Yield | 6%/2=3% | ||
| Period | Semi-annual Cash flows | PV of $1 at 3% | PV of C/fs | Period*CF | PV of (Period*CF) |
| 1 | 2 | 3=1/1.03^n | 4=2*3 | 5=1*2 | 6=5*3 |
| 1 | 45 | 0.97087 | 43.69 | 45 | 43.69 |
| 2 | 45 | 0.94260 | 42.42 | 90 | 84.83 |
| 3 | 45 | 0.91514 | 41.18 | 135 | 123.54 |
| 4 | 45 | 0.88849 | 39.98 | 180 | 159.93 |
| 5 | 45 | 0.86261 | 38.82 | 225 | 194.09 |
| 6 | 45 | 0.83748 | 37.69 | 270 | 226.12 |
| 7 | 45 | 0.81309 | 36.59 | 315 | 256.12 |
| 8 | 45 | 0.78941 | 35.52 | 360 | 284.19 |
| 9 | 45 | 0.76642 | 34.49 | 405 | 310.40 |
| 10 | 1045 | 0.74409 | 777.58 | 10450 | 7775.78 |
| Total | Current price= | 1127.95 | 9458.69 | ||
| PV of time Wt.ed C/fs. | |||||
| Macaulay duration = | |||||
| PV of Time weighted coupon cash flows/Current market price of the bond | |||||
| (PV of (Period*CF))/Current Bond price | |||||
| ie.9458.69/1127.95= | |||||
| 8.39 | |||||
| Semi annual periods | |||||
| ie.8.39/2=4.20.yrs. | |||||
| Modified Duration | |||||
| Macaulay duration/(1+YTM/n) | |||||
| where, YTM is the annual effective interest rate & n= no.of coupons/yr. | |||||
| 8.39/(1+(6%/2))= | |||||
| 8.15 | |||||
| Semi annual periods | |||||
| ie.8.15/2=4.075 yrs. | |||||
| Convexity | |||||
| Period (t) | Semi-annual Cash flows | PV of $1 at Ytm 3% | PV of C/fs | Wt.=PV of cash flow/Price,ie.1127.95 | Convexity=t*(t+1)*Wt*1/(1+ytm)^2 |
| 1 | 2 | 3=1/1.03^n | 4=2*3 | 5=4/1127.95 | 6=1*(1+1)*5/(1+0.03)^2 |
| 1 | 45 | 0.97087 | 43.69 | 3.87% | 0.0730 |
| 2 | 45 | 0.94260 | 42.42 | 3.76% | 0.2127 |
| 3 | 45 | 0.91514 | 41.18 | 3.65% | 0.4130 |
| 4 | 45 | 0.88849 | 39.98 | 3.54% | 0.6682 |
| 5 | 45 | 0.86261 | 38.82 | 3.44% | 0.9732 |
| 6 | 45 | 0.83748 | 37.69 | 3.34% | 1.3227 |
| 7 | 45 | 0.81309 | 36.59 | 3.24% | 1.7123 |
| 8 | 45 | 0.78941 | 35.52 | 3.15% | 2.1374 |
| 9 | 45 | 0.76642 | 34.49 | 3.06% | 2.5939 |
| 10 | 1045 | 0.74409 | 777.58 | 68.94% | 71.4780 |
| Total | 1127.95 | 81.5844 | |||
| Semi-annual convexity=81.5844 | |||||
| Annual convexity=81.5844/4= | |||||
| 20.40 | |||||