Question

In: Advanced Math

solve the given DE or IVP (Initial-Value Problem). a. 2y′ + y cot x = 8y-1...

solve the given DE or IVP (Initial-Value Problem).

a. 2y′ + y cot x = 8y-1 cos3 x

b. y′ = sin2 (3x − 3y + 1)

c. xy′ + y ln x = y ln y

d. x2 dy/dx = y2 + 5xy + 4x2

Solutions

Expert Solution


Related Solutions

Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y =...
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y = 2sin2t; y(0) = 2, y'(0) = 4
Find the solution of the given initial value problem. y(4) + 2y''' + y'' + 8y'...
Find the solution of the given initial value problem. y(4) + 2y''' + y'' + 8y' − 12y = 12 sin t − e−t;    y(0) = 7,    y'(0) = 0,    y''(0) = −1,    y'''(0) = 2
Solve IVP for y(x): dy/dx + (3/x)y = 8y^4, y(1) = 1
Solve IVP for y(x): dy/dx + (3/x)y = 8y^4, y(1) = 1
Solve the given initial-value problem. y''' − 2y'' + y' = 2 − 24ex + 40e5x,...
Solve the given initial-value problem. y''' − 2y'' + y' = 2 − 24ex + 40e5x, y(0) = 1 2 , y'(0) = 5 2 , y''(0) = − 5 2
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0)...
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0) = 0, y(0) = 0
Use the Laplace transform to solve the given initial value problem. y'' + 2y' + 10y...
Use the Laplace transform to solve the given initial value problem. y'' + 2y' + 10y = 6cos2t - 4sin2t, y(0)=2, y'(0)= -2
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
10. Solve the following initial value problem: y''' − 2y '' + y ' = 2e...
10. Solve the following initial value problem: y''' − 2y '' + y ' = 2e ^x − 4e^ −x y(0) = 3, y' (0) = 1, y''(0) = 6 BOTH LINES ARE PART OF A SYSTEM OF EQUATIONS
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT