Question

In: Physics

Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing...

Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing the net wave: y(x,t) = (63.2 cm) * sin(1.4*x - 2.1 s-1*t + 0.24 rad); with x in meters and t in seconds. What is the phase difference between them? Give answer in radians. Do not enter unit. What is their amplitude? What is the wavelength of the two waves? What is their period?

Solutions

Expert Solution

Given:

A general form of a sinusoidal wave is

where A is the amplitude of the wave, ω is the wave's angular frequency, K is the wavenumber, and ϕ is the phase of the sine wave given in radians. Now similar sine wave but differ by a phase shift can be expressed as:

When these two waves exist in the same medium, the resultant wave resulting from the superposition of the two individual waves is the sum of the two individual waves:

Since

Comparing equation (i) and equation (ii)

Solution for phase angle:

Solution for Amplitude:

(Since cos 0.24= 0.97)

Hence

Solution for wavelenght:

K=1.4

If is wave length then its relation ship with K will be:

(Since x is in meter and radians)

Solution for periods:

Angular frequency

( T is Time period and has a relation with angular frequency)

(since radians)

Sec


Related Solutions

What phase difference between two otherwise identical traveling waves, moving in the same direction along a...
What phase difference between two otherwise identical traveling waves, moving in the same direction along a stretched string, will result in the combined wave having an amplitude 1.3 times that of the common amplitude of the two combining waves? Express your answer in (a) degrees, (b) radians, and (c) as a fraction of the wavelength.
If two sinusoidal waves with amplitudes 4A and 8A are in phase with each other, their...
If two sinusoidal waves with amplitudes 4A and 8A are in phase with each other, their resulting amplitude will be 10A. True or False?
A string with a length of 35 cm is fixed at both ends. Waves travel along...
A string with a length of 35 cm is fixed at both ends. Waves travel along it at a speed of 4 m/s. What is the frequency of its lowest mode of standing waves? At what distance from the end of the string is the first node if the string is vibrating at four times its fundamental frequency?
If two identical waves with a phase difference of 5π are added, the result is Group...
If two identical waves with a phase difference of 5π are added, the result is Group of answer choices This problem cannot be solved without knowing the wavelengths of the two waves. a wave with the same amplitude but twice the frequency. a wave with zero amplitude. a wave with an intensity equal to the sum of the intensities of the two waves. a wave with the same frequency but twice the amplitude.
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one...
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one speaker be placed behind the other for the sound to have an amplitude 1.90 times that of each speaker alone?
The wave functions of two waves traveling in the same direction are given below. The two...
The wave functions of two waves traveling in the same direction are given below. The two waves have the same frequency, wavelength, and amplitude, but they differ in their phase constant. y1 (x,t) = 2 sin⁡(2πx ‒ 20πt), and y2 (x,t) = 2 sin(2πx ‒ 20πt + φ), where, y is in centimetres, x is in meters, and t is in seconds. Assume that the two waves start to propagate at the same instant, t_0,1 = t_0,2 = 0 sec,...
Suppose a sinusoidal wave on a string, having amplitude A and travelling in the −xˆ direction,...
Suppose a sinusoidal wave on a string, having amplitude A and travelling in the −xˆ direction, is partially reflected at the point x = 0, so that the reflected wave is in phase with the incident wave at x = 0 but has amplitude kA, where 0 ≤ k ≤ 1 is the reflection coefficient. a) Show that each point on the string undergoes simple harmonic motion and determine how the amplitude of the simple harmonic motion varies with x...
For every trial, the waves travel for exactly the same amount of time to the same...
For every trial, the waves travel for exactly the same amount of time to the same point from each of the speakers. Does't that mean every "Wave state" should be a "trough?" Explain. What is the essential difference between your data focused on the destructive interference and the data focused on the constructive interference?
A transverse sinusoidal wave on a string is moving in the −x-direction. Its speed is 30.0...
A transverse sinusoidal wave on a string is moving in the −x-direction. Its speed is 30.0 m/s, and its period is 20.0 ms. At t = 0, a colored mark on the string at x = 0 has a vertical position of 2.00 cm and is moving down with a speed of 1.30 m/s. (a) What is the amplitude of the wave (in m)? 0.0204 Correct: Your answer is correct. m (b) What is the phase constant (in rad)? Incorrect:...
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m...
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m are spaceced 5.00 m from eachother. At what minimal distance (in m) from one of them should an observer stand to hear almost nothing (the first minimum)(__________)? The first maximum after this minimum (__________)? Second minimum (__________)? Second maximum (__________)? Third minimum (__________)? Third maximum (__________)? How many minima overall can be observed (__________)? How many maxima (__________)?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT