Question

In: Physics

A quantity of 1.0 mol of an ideal monatomic gas is taken through a complete cycle...

A quantity of 1.0 mol of an ideal monatomic gas is taken through a complete cycle in three steps:  (1→2) increase in pressure at constant volume, (2→3) adiabatic expansion and (3→1) decrease in volume at constant pressure.  Temperature and pressure values are given below.

T1 = 300 K       T2 = 600 K       T3 = 455 K       P1 = 1 atm = 1 x 105 Pa

A.  Accurately illustrate and label the three steps of the cycle on the P-V diagram below.  (15 pts)

B.  Apply the First Law of Thermodynamics and the Ideal Gas Law to calculate the unknown quantitiesshown in the table below and complete the table.  (15 pts)

1 →2

2 → 3

3 → 1

Q

3735 J

W

ΔEint

−1805 J

Solutions

Expert Solution


Related Solutions

One mole of an ideal monatomic gas is taken through the reversible cycle shown in the...
One mole of an ideal monatomic gas is taken through the reversible cycle shown in the figure. Generic_PV_01.png Process B→C is an adiabatic expansion with PB=11.0 atm and VB=4.00×10-3 m3. The volume at State C is 9.00VB. Process A→B occurs at constant volume, and Process C→A occurs at constant pressure. What is the energy added to the gas as heat for the cycle? Incorrect. Tries 6/10 Previous Tries What is the energy leaving the gas as heat? Tries 0/10 What...
An ideal gas is taken through a complete cycle in three steps: adiabatic expansion with work...
An ideal gas is taken through a complete cycle in three steps: adiabatic expansion with work equal to I25 J, isothermal contraction at 325 K, and increase in pressure at constant volume. (a) Draw a p-V diagram for the three steps. (b) How much energy is transferred as heat in step 3, and (c) is it transferred to or from the gas?
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶ B is an isothermal process. B⟶ C is an isovolumetric process. C⟶ A is an adiabatic process. (i) Determine the work done on the ideal gas during each cycle of this heat engine, (ii) Determine the heat flow into the gas during each cycle of this heat engine (iii) Determine the net work done by one cycle (iv) Determine the efficiency of this heat...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom
4 mol of a diatomic gas are taken through cycle ABC. AC is adiabatic, BC is...
4 mol of a diatomic gas are taken through cycle ABC. AC is adiabatic, BC is isochoric, and AB is isothermal. The volume at A = 2L and T = 300K. The pressure at B is 4 times less than at A. What is the efficiency of the cycle? Show pictorial as well
A 1.0 mol sample of helium gas and a 1.0 mol sample of ammonia gas are...
A 1.0 mol sample of helium gas and a 1.0 mol sample of ammonia gas are held at the same temperature. Assuming both behave as ideal gases, do they have the same total internal energy?
Two moles of a monatomic ideal gas undergo the following cycle: Process ab is an isochloric...
Two moles of a monatomic ideal gas undergo the following cycle: Process ab is an isochloric process ending with pressure at b 3.0x10^5 Pa Process bc is isothermal Process ca is isobaric with pressure 1.0x10^5 Pa. The maximum temperature attained by the gas is 375 degrees celcius. a. How much heat enters the gas and how much heat leaves the gas at each cycle. b. How much work done is done per cycle. c. What is the efficiencyfor this cycle?...
2.00-mol of a monatomic ideal gas goes from State A to State D via the path...
2.00-mol of a monatomic ideal gas goes from State A to State D via the path A→B→C→D: State A PA=13.0atm, VA=13.00L State B PB=13.0atm, VB=4.00L State C PC=22.5atm, VC=4.00L State D PD=22.5atm, VD=24.00L Assume that the external pressure is constant during each step and equals the final pressure of the gas for that step. Calculate q for this process. Calculate w for this process. Calculate ΔE for this process Calculate ΔH for this process.
2.00-mol of a monatomic ideal gas goes from State A to State D via the path...
2.00-mol of a monatomic ideal gas goes from State A to State D via the path A?B?C?D: State A PA=10.0atm, VA=12.50L State B PB=10.0atm, VB=7.00L State C PC=22.5atm, VC=7.00L State D PD=22.5atm, VD=21.50L Assume that the external pressure is constant during each step and equals the final pressure of the gas for that step. Calculate q for this process. Calculate w for this process. Calculate ?E for this process Calculate ?H for this process.
A reversible engine contains 0.350 mol of ideal monatomic gas, initially at 586 K and confined...
A reversible engine contains 0.350 mol of ideal monatomic gas, initially at 586 K and confined to a volume of 2.42 L . The gas undergoes the following cycle: ⋅ Isothermal expansion to 4.74 L ⋅ Constant-volume cooling to 252 K ⋅ Isothermal compression to 2.42 L ⋅ Constant-volume heating back to 586 K Determine the engine's efficiency in percents, defined as the ratio of the work done to the heat absorbed during the cycle.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT