Question

In: Physics

One mole of an ideal monatomic gas is taken through the reversible cycle shown in the...

One mole of an ideal monatomic gas is taken through the reversible cycle shown in the figure. Generic_PV_01.png Process B→C is an adiabatic expansion with PB=11.0 atm and VB=4.00×10-3 m3. The volume at State C is 9.00VB. Process A→B occurs at constant volume, and Process C→A occurs at constant pressure. What is the energy added to the gas as heat for the cycle? Incorrect. Tries 6/10 Previous Tries What is the energy leaving the gas as heat? Tries 0/10 What is the net work done by the gas? Tries 0/10 What is the efficiency of the cycle? (in percent-do not enter units) Incorrect. Tries 1/10 Previous Tries

Solutions

Expert Solution

Process A to B  is a constant volume process.  

Process B to C  is a adiabatic process.  

Process C to A is a constant pressure process.  

For mono atomic gas

Ideal gas equations

,

Process :

( since there is no change in volume)

Process :

( since it is adiabatic process)

Process :

----------------------

a)

Energy added to system as heat is

b)

Energy leaving the gas as heat is ,

c)

Net work done by the gas  

d)

Efficiency of cycle is


Related Solutions

A quantity of 1.0 mol of an ideal monatomic gas is taken through a complete cycle...
A quantity of 1.0 mol of an ideal monatomic gas is taken through a complete cycle in three steps:  (1→2) increase in pressure at constant volume, (2→3) adiabatic expansion and (3→1) decrease in volume at constant pressure.  Temperature and pressure values are given below. T1 = 300 K       T2 = 600 K       T3 = 455 K       P1 = 1 atm = 1 x 105 Pa A.  Accurately illustrate and label the three steps of the cycle on the P-V diagram below.  (15 pts) B.  Apply the First Law...
Consider a process in which one mole of a monatomic ideal gas is compressed from a...
Consider a process in which one mole of a monatomic ideal gas is compressed from a volume of V1 =1.459m3 to V2 =1m3 at a constant temperature of T =353.7 K. (a) What is the entropy change of the gas (in J/K units)? (b) What is the change in the value of PV for the gas (in J units)? (c) What is the energy change of the gas (in J units)? (d) What is the enthalpy change of the gas...
One mole of an ideal monatomic gas initially at 300 K and a pressure of 15.0...
One mole of an ideal monatomic gas initially at 300 K and a pressure of 15.0 atm expands to a final pressure of 1.00 atm. The expansion can occur via any one of four different paths: a. isothermal and reversible, b. isothermal and irreversible, c. adiabatic and reversible, and d. adiabatic and irreversible. In irreversible processes, the expansion occurs against an external pressure of 1.00 atm. For each case, calculate the values of q, w, DU, and DH. I need...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶ B is an isothermal process. B⟶ C is an isovolumetric process. C⟶ A is an adiabatic process. (i) Determine the work done on the ideal gas during each cycle of this heat engine, (ii) Determine the heat flow into the gas during each cycle of this heat engine (iii) Determine the net work done by one cycle (iv) Determine the efficiency of this heat...
A mole of an ideal gas goes through a cycle of a Carnot engine. Draw the...
A mole of an ideal gas goes through a cycle of a Carnot engine. Draw the pressure vs volume and entropy vs temperature planes for this cycle. What do the diagrams look like when the efficiency of the cycle is 50% and 99%. Then Calculate the work done per cycle by the gas and find the efficiency of the cycle.
0.5 mole of a monatomic ideal gas is loaded into a cylinder and contained by a...
0.5 mole of a monatomic ideal gas is loaded into a cylinder and contained by a frictionless piston. The piston is set so that there is an initial volume of 2L. The gas in the cylinder is at a temperature of 298K. The gas is allowed to expand adiabatically against 1 atm of pressure. Calculate V/n initial, q per mole, w per mole, delta U per mole, delta S per mole and delta H per mole. What is the final...
One mole of an ideal monatomic gas is expanded from an initial state at 3 bar...
One mole of an ideal monatomic gas is expanded from an initial state at 3 bar and 450 K to a final state at 2 bar and 250 K. There are two different paths for this expansion: path 1: (1 mole ideal gas, 3 bar, 450 K) → (1 mole ideal gas, 3 bar, 250 K) → (1 mole ideal gas, 2 bar, 250 K) path 2: (1 mole ideal gas, 3 bar, 450 K) → (1 mole ideal gas,...
25 pts) One mole of ideal, monatomic gas, initially at T = 250 K and pressure...
25 pts) One mole of ideal, monatomic gas, initially at T = 250 K and pressure 5.0 atm is: a) reversibly heated at constant pressure until its volume doubles b) reversibly heated at constant volume until its pressure doubles Determine w, q ,ΔU, ΔΗ , and ΔS for these two cases (20 pts). Can you calculate A and G for these two cases? Explain why. (5 pts)
If dU = CVdT show that for the reversible expansion of one mole of an ideal...
If dU = CVdT show that for the reversible expansion of one mole of an ideal gas: deltaS = CP ln(T2/T1) + R ln(V2/V1) if CV is not equal to f(T).
Efficiency An ideal diatomic gas is used in a reversible heat cycle. The gas begins in...
Efficiency An ideal diatomic gas is used in a reversible heat cycle. The gas begins in state A with pressure 100 kPa, temperature300 K, and volume 0.50 L. It first undergoes an isochoric heating to state B with temperature 900 K. That is followed by an isothermal expansion to state C. Finally, an isobaric compression that returns the gas to state A. (a)Determine the pressure, volume, and temperature of state B. (b)Determine the pressure, volume, and temperature of state C....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT