Question

In: Math

The Food Marketing Institute shows that 16% of households spend more than $100 per week on...

The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 900 households will be selected from the population. Use z-table.

  1. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).

  2. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?

  3. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of 1,300 households (to 4 decimals)?

Solutions

Expert Solution

Solution

Given that,

p = 0.16

1 - p = 1 - 0.16 = 0.84

n = 900

a)   = p = 0.16

=  [p ( 1 - p ) / n] = [(0.16 * 0.84) / 900 ] = 0.0122

b) 0.16  ± 0.02 = 0.14, 0.18

P( 0.14 <   < 0.18 )

= P[(0.14 - 0.16) / 0.0122 < ( - ) / < (0.18 - 0.16) / 0.0122 ]

= P( -1.64 < z < 1.64)

= P(z < 1.64) - P(z < -1.64)

Using z table,   

= 0.9495 - 0.0505

= 0.8990

c) n = 1300

   = p = 0.16

=  [p ( 1 - p ) / n] = [(0.16 * 0.84) / 1300 ] = 0.0102

0.16  ± 0.02 = 0.14, 0.18

P( 0.14 <  ​​​​​​​ < 0.18 )

= P[(0.14 - 0.16) / 0.0102 < ( - ) / < (0.18 - 0.16) / 0.0102 ]

= P( -1.96 < z < 1.96)

= P(z < 1.96) - P(z < -1.96)

Using z table,   

= 0.9750 - 0.0250

= 0.9500


Related Solutions

The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 600 households will be selected from the population. Use z-table. Calculate  the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)? What is...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. Calculate ( ), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. 1. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). 2. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. A) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4 decimals)? B) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion for a sample of...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.18 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
eBook The Food Marketing Institute shows that 15% of households spend more than $100 per week...
eBook The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. Calculate ( ), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to...
A Food Marketing Institute found that 45% of households spend more than $125 a week on...
A Food Marketing Institute found that 45% of households spend more than $125 a week on groceries. Assume the population proportion is 0.45 and a simple random sample of 113 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.43? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
A Food Marketing Institute found that 34% of households spend more than $125 a week on...
A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 368 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.32? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer as...
A Food Marketing Institute found that 47% of households spend more than $125 a week on...
A Food Marketing Institute found that 47% of households spend more than $125 a week on groceries. Assume the population proportion is 0.47 and a simple random sample of 89 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.35? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT