In: Math
The Food Marketing Institute shows that 16% of households spend
more than $100 per week on groceries. Assume the population
proportion is p = 0.16 and a sample of 900 households will
be selected from the population. Use z-table.
Solution
Given that,
p = 0.16
1 - p = 1 - 0.16 = 0.84
n = 900
a) = p = 0.16
= [p ( 1 - p ) / n] = [(0.16 * 0.84) / 900 ] = 0.0122
b) 0.16 ± 0.02 = 0.14, 0.18
P( 0.14 < < 0.18 )
= P[(0.14 - 0.16) / 0.0122 < ( - ) / < (0.18 - 0.16) / 0.0122 ]
= P( -1.64 < z < 1.64)
= P(z < 1.64) - P(z < -1.64)
Using z table,
= 0.9495 - 0.0505
= 0.8990
c) n = 1300
= p = 0.16
= [p ( 1 - p ) / n] = [(0.16 * 0.84) / 1300 ] = 0.0102
0.16 ± 0.02 = 0.14, 0.18
P( 0.14 < < 0.18 )
= P[(0.14 - 0.16) / 0.0102 < ( - ) / < (0.18 - 0.16) / 0.0102 ]
= P( -1.96 < z < 1.96)
= P(z < 1.96) - P(z < -1.96)
Using z table,
= 0.9750 - 0.0250
= 0.9500