Question

In: Statistics and Probability

A Food Marketing Institute found that 34% of households spend more than $125 a week on...

A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 368 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.32?

Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations.

Answer =  (Enter your answer as a number accurate to 4 decimal places.)

Solutions

Expert Solution

Solution

Given that,

p = 0.34

1 - p = 1 - 0.34 = 0.66

n = 368

= p = 0.34

=  [p ( 1 - p ) / n] =   [(0.34 * 0.66) / 368 ] = 0.0247

P( < 0.32)

= P[( - ) / < (0.32 - 0.34) / 0.0247]

= P(z < -0.8097)

Using t table

= 0.2091


Related Solutions

A Food Marketing Institute found that 34% of households spend more than $125 a week on...
A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 101 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.35? There is a  probability that the sample proportion of households spending more than $125 a week is less than 0.35. Round the answer to 4...
A Food Marketing Institute found that 45% of households spend more than $125 a week on...
A Food Marketing Institute found that 45% of households spend more than $125 a week on groceries. Assume the population proportion is 0.45 and a simple random sample of 113 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.43? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
A Food Marketing Institute found that 47% of households spend more than $125 a week on...
A Food Marketing Institute found that 47% of households spend more than $125 a week on groceries. Assume the population proportion is 0.47 and a simple random sample of 89 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.35? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
A Food Marketing Institute found that 28% of households spend more than $125 a week on...
A Food Marketing Institute found that 28% of households spend more than $125 a week on groceries. Assume the population proportion is 0.28 and a simple random sample of 436 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.3? There is a  probability that the sample proportion of households spending more than $125 a week is less than 0.3. Round the answer to 4...
A Food Marketing Institute found that 35% of households spend more than $125 a week on...
A Food Marketing Institute found that 35% of households spend more than $125 a week on groceries. Assume the population proportion is 0.35 and a simple random sample of 143 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is between 0.32 and 0.46? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations.
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. Calculate ( ), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. 1. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). 2. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. A) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4 decimals)? B) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion for a sample of...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.18 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT