Question

In: Statistics and Probability

A Food Marketing Institute found that 45% of households spend more than $125 a week on...

A Food Marketing Institute found that 45% of households spend more than $125 a week on groceries. Assume the population proportion is 0.45 and a simple random sample of 113 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.43?

Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations.

Answer =  (Enter your answer as a number accurate to 4 decimal places.

Solutions

Expert Solution

Solution:

Given ,

p = 0.45 (population proportion)

n = 113 .. (sample size)

Let be the sample proportion.

The sampling distribution of is approximately normal with

mean = =  p = 0.45

SD =   =     

=

=  0.04680027229

Now ,

P(sample proportion is more than 0.43)

= P[ > 0.43]

=

=  P(Z > (0.43 - 0.45)/0.04680027229)

= P(Z > -0.4273)

= 1 - P(Z < -0.4273)

= 1 - 0.3346

= 0.6654 ...use z table

Answer = 0.6654


Related Solutions

A Food Marketing Institute found that 34% of households spend more than $125 a week on...
A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 368 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.32? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer as...
A Food Marketing Institute found that 47% of households spend more than $125 a week on...
A Food Marketing Institute found that 47% of households spend more than $125 a week on groceries. Assume the population proportion is 0.47 and a simple random sample of 89 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.35? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
A Food Marketing Institute found that 34% of households spend more than $125 a week on...
A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 101 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.35? There is a  probability that the sample proportion of households spending more than $125 a week is less than 0.35. Round the answer to 4...
A Food Marketing Institute found that 28% of households spend more than $125 a week on...
A Food Marketing Institute found that 28% of households spend more than $125 a week on groceries. Assume the population proportion is 0.28 and a simple random sample of 436 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.3? There is a  probability that the sample proportion of households spending more than $125 a week is less than 0.3. Round the answer to 4...
A Food Marketing Institute found that 35% of households spend more than $125 a week on...
A Food Marketing Institute found that 35% of households spend more than $125 a week on groceries. Assume the population proportion is 0.35 and a simple random sample of 143 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is between 0.32 and 0.46? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations.
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. Calculate ( ), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. 1. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). 2. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. A) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4 decimals)? B) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion for a sample of...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.18 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT