Question

In: Statistics and Probability

The Food Marketing Institute shows that 15% of households spend more than $100 per week on...

The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population.

A) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4 decimals)?

B) What is the probability that the sample proportion will be within +/- 0.03 of the population proportion for a sample of 1,200 households (to 4 decimals)?

Solutions

Expert Solution

Refer Standard normal table/Z-table to find the probability OR use excel formula "=NORM.S.DIST(2.38, TRUE)" & "=NORM.S.DIST(-2.38, TRUE)" to find the probability.

----------------------------------------------------------------------------------------------------------

given: n=1200

Refer Standard normal table/Z-table to find the probability OR use excel formula "=NORM.S.DIST(2.91, TRUE)" & "=NORM.S.DIST(-2.91, TRUE)" to find the probability.


Related Solutions

The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. 1. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). 2. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to...
eBook The Food Marketing Institute shows that 15% of households spend more than $100 per week...
eBook The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. Calculate ( ), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. Calculate ( ), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.18 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 600 households will be selected from the population. Use z-table. Calculate  the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)? What is...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 900 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
A Food Marketing Institute found that 45% of households spend more than $125 a week on...
A Food Marketing Institute found that 45% of households spend more than $125 a week on groceries. Assume the population proportion is 0.45 and a simple random sample of 113 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.43? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
A Food Marketing Institute found that 34% of households spend more than $125 a week on...
A Food Marketing Institute found that 34% of households spend more than $125 a week on groceries. Assume the population proportion is 0.34 and a simple random sample of 368 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is less than 0.32? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer as...
A Food Marketing Institute found that 47% of households spend more than $125 a week on...
A Food Marketing Institute found that 47% of households spend more than $125 a week on groceries. Assume the population proportion is 0.47 and a simple random sample of 89 households is selected from the population. What is the probability that the sample proportion of households spending more than $125 a week is more than than 0.35? Note: You should carefully round any z-values you calculate to 4 decimal places to match wamap's approach and calculations. Answer =  (Enter your answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT