Question

In: Physics

A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction...

A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction down an incline plane with the incline angle ? = 20? . 1. How much work is done by frictional force acting on the hoop on (1) translation, (2) rotation of the hoop? Show all work so that your final answer is justified. 2. How much is ???ℎ?? on the hoop? Explain by using your answer from part 1, and whatever other argument you find necessary. 3. If the incline is 40.0 cm long and the hoop started at its top from rest, what angular speed will it have at the bottom? You must use energy methods to obtain your answer.

Solutions

Expert Solution

See the uploads for the solution:


Related Solutions

Problem: a unifiorm hoop of mass m and radius r rolls without slipping on a fixed...
Problem: a unifiorm hoop of mass m and radius r rolls without slipping on a fixed cylinder of radius R. if the hoop is stats rolling from rest on top of the bigger cylinder, use the method of Lagrange multipliers to find the point at which the hoop fall off the cylinder. Question: I know how to derive Lagrange equeation. but to use the method of Lagrange multipliers, i have to finde constrain. solution says that f1, f2 are constrain....
A uniform hoop of mass M and radius R rolls down an incline without slipping, starting...
A uniform hoop of mass M and radius R rolls down an incline without slipping, starting from rest. The angle of inclination of the incline is θ. a. After moving a distance L along the incline, what is the angular speed ω of the hoop? b. If the coefficient of static friction between the hoop and the incline is µs = 1/3, what is the greatest possible value of θ such that no slipping occurs between the hoop and the...
1. A hollow sphere (mass 2.75 kg, radius 19.9 cm) is rolling without slipping along a...
1. A hollow sphere (mass 2.75 kg, radius 19.9 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 25.6o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2. 2. At t =...
A 2.2 kg hoop 1.2 in diameter is rolling to the right without slipping on a...
A 2.2 kg hoop 1.2 in diameter is rolling to the right without slipping on a horizontal floor at a steady 2.6 rad/s. A uniform cylinder with its outer radius two times it’s inner radius with the same mass, same diameter as the hoop and also rolls without slipping with the same angular frequency. What is the ratio of rotational kinetic energies between the hoop and the uniform cylinder? What is the ratio of the rotational frequency between the hoop...
3) A solid cylinder with mass 4kg and radius r=0.5 m rolls without slipping from a...
3) A solid cylinder with mass 4kg and radius r=0.5 m rolls without slipping from a height of 10 meters on an inclined plane with length 20 meters. a) Find the friction force so that it rolls without slippingb) Calculate the minimum coefficient of rolling friction muc) Calculate its speed as it arrives at the bottom of the inclined plane.
A hoop, a solid disk, and a solid sphere, all with the same mass and the same radius, are set rolling without slipping up an incline, all with the same initial kinetic energy.
A hoop, a solid disk, and a solid sphere, all with the same mass and the same radius, are set rolling without slipping up an incline, all with the same initial kinetic energy. Which goes furthest up the incline? The hoop The disk The sphere They all roll to the same height Briefly explain your answer to the previous question. The same three objects as in the previous question are set rolling without slipping up an incline, all with the same initial linear speed. Which goes farthest...
A uniform cylinder of mass m and radius r is rolling down a slope of inclination...
A uniform cylinder of mass m and radius r is rolling down a slope of inclination 30°. The cylinder rolls without slipping. At what rate does the cylinder accelerate down the slope?
Four disks of mass m= 50 g radius r= 1.25 cm arranged into an equilateral triangle...
Four disks of mass m= 50 g radius r= 1.25 cm arranged into an equilateral triangle of side lengths= 3 cm. (One disk is at each corner of the triangle and one is in the center.) How much torque would you need to apply to flip the spinner over in 0.1 s?
A ring (mass 2 M, radius 1 R) rotates in a CCW direction with an initial...
A ring (mass 2 M, radius 1 R) rotates in a CCW direction with an initial angular speed 2 ω. A disk (mass 4 M, radius 2 R) rotates in a CW direction with initial angular speed 4 ω. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction. What is the initial angular momentum Li of the ring+disk system? Write your answer in terms...
1) A cylinder of Mass M and radius R, and initial speed V, starts rolling up...
1) A cylinder of Mass M and radius R, and initial speed V, starts rolling up an incline of angle theta relative to horizontal. Assuming no slipping, how high up does the cylinder get? 2) teeter/totter a) Peewee has mass m and his big buddy Delilah has mass 2m. If Peewee sits at one end of a uniform teeter totter of length L and mass M, how far from the central pivot should Delilah sit (ie on the other end)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT