Question

In: Physics

A ring (mass 2 M, radius 1 R) rotates in a CCW direction with an initial...

A ring (mass 2 M, radius 1 R) rotates in a CCW direction with an initial angular speed 2 ω. A disk (mass 4 M, radius 2 R) rotates in a CW direction with initial angular speed 4 ω. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction.

What is the initial angular momentum Li of the ring+disk system? Write your answer in terms of MR2ω.

What is the final angular velocity ωf of the ring+disk system? Write your answer in terms of ω.

Solutions

Expert Solution


Related Solutions

A ring (2 kg, r = 1 m) rotates in a CW direction with initial angular...
A ring (2 kg, r = 1 m) rotates in a CW direction with initial angular velocity 10 s-1. A disk (8 kg, r = 1 m) rotates in a CCW direction with initial angular velocity 50 s-1. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction. What is the initial angular momentum Li of the ring+disk system? What is the final angular velocity...
A ring (4 kg, r = 2 m) rotates in a CW direction with initial angular...
A ring (4 kg, r = 2 m) rotates in a CW direction with initial angular velocity 20 s-1. A disk (8 kg, r = 2 m) rotates in a CCW direction with initial angular velocity 50 s-1. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction. What is the initial angular momentum Li of the ring+disk system? What is the final angular velocity...
A space station is approximately a ring of radius,R, and mass m, which rotates about its...
A space station is approximately a ring of radius,R, and mass m, which rotates about its symmetry axis with angular velocity,~ω=ω0ˆe3. A meteor is traveling with momentum,~p, that is parallel to the original ˆe3, and strikes the space station at a point on the rim,transferring the entire momentum to the space station (an inelastic collision where the meteor sticks to the space station). Further, though the meteor has significant momentum,it is of very small mass so that the moment of...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
The moment of inertia of a thin ring of mass M and radius R about its...
The moment of inertia of a thin ring of mass M and radius R about its symmetry axis is ICM = MR2 Kira is working the ring-toss booth at a local carnival. While waiting for customers, Kira occupies her time by twirling one of the plastic rings of mass M and radius R about her finger. Model the motion of the plastic ring as a thin ring rotating about a point on its circumference. What is the moment of inertia of...
a) Consider an object of mass m=0.527kg rotates on circular path of radius r=1.82 m. Object...
a) Consider an object of mass m=0.527kg rotates on circular path of radius r=1.82 m. Object starts at rest and slowly increase its angular velocity at constant angular acceleration of 0.128 rad/s2. I. Find the angular velocity of the object after 35 seconds? II. Find the magnitude and direction of resultant linear acceleration after 35 seconds? III. Find the net force acting on the object after 35 seconds? b) Consider the same above object of mass m=0.527kg rotates around its...
1) A cylinder of Mass M and radius R, and initial speed V, starts rolling up...
1) A cylinder of Mass M and radius R, and initial speed V, starts rolling up an incline of angle theta relative to horizontal. Assuming no slipping, how high up does the cylinder get? 2) teeter/totter a) Peewee has mass m and his big buddy Delilah has mass 2m. If Peewee sits at one end of a uniform teeter totter of length L and mass M, how far from the central pivot should Delilah sit (ie on the other end)...
A ring of charge with radius R = 2.5 m is centered on the origin in...
A ring of charge with radius R = 2.5 m is centered on the origin in the x-y plane. A positive point charge is located at the following coordinates: x = 17.1 m y = 3.8 m z = -16.3 m The point charge and the total charge on the ring are the same, Q = +81 C. Find the net electric field along the z-axis at z = 4.5 m. Enet,x = Enet,y = Enet,z =
A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction...
A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction down an incline plane with the incline angle ? = 20? . 1. How much work is done by frictional force acting on the hoop on (1) translation, (2) rotation of the hoop? Show all work so that your final answer is justified. 2. How much is ???ℎ?? on the hoop? Explain by using your answer from part 1, and whatever other argument you...
A uniform cylindrical turntable of radius 1.90 m and mass 28.2 kg rotates counterclockwise in a...
A uniform cylindrical turntable of radius 1.90 m and mass 28.2 kg rotates counterclockwise in a horizontal plane with an initial angular speed of 4π rad/s. The fixed turntable bearing is frictionless. A lump of clay of mass 2.49 kg and negligible size is dropped onto the turntable from a small distance above it and immediately sticks to the turntable at a point 1.80 m to the east of the axis. (a) Find the final angular speed of the clay...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT