In: Math
a)
Ho :   µ1 - µ2 =   0
Ha :   µ1-µ2 ╪   0
      
b)
Normal approximation holds if the two sampled
populations are similar and not too assymmetric  
       
c) Sample #1   ---->   1  
           
   
mean of sample 1,    x̅1=   100.800  
           
   
standard deviation of sample 1,   s1 =   
12.900          
       
size of sample 1,    n1=   10  
           
   
          
           
   
Sample #2   ---->   2  
           
   
mean of sample 2,    x̅2=   109.200  
           
   
standard deviation of sample 2,   s2 =   
7.068          
       
size of sample 2,    n2=   10  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
100.8000   -   109.2   =  
-8.400  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    10.4009  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
4.6514          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
-8.4000   -   0   ) /   
4.65   =   -1.806
d)
Degree of freedom, DF=   n1+n2-2 =   
18
p-value =        0.0877
e)
p-value>α , Do not reject null hypothesis
there is no evidence that  there is a difference in the
average number of sheets of dry wall that a person can install per
week based on age.