In: Statistics and Probability
1) Find the critical values chi Subscript Upper R Superscript 2 and chi Subscript Upper L Superscript 2 for the given confidence level c and sample size n. c=0.95, n=19
2) Use technology to construct the confidence intervals for the population variance sigma squared and the population standard deviation sigma. Assume the sample is taken from a normally distributed population. c=0.98 ,s^2=18.49 ,n=30
Solution :
1)
Given that,
n = 19
Degrees of freedom = df = n - 1 = 18
Critical values are :
2L = 2/2,df = 31.526
2R = 21 - /2,df = 8.231
2)
Point estimate = s2 = 18.49
n = 30
Degrees of freedom = df = n - 1 = 29
2L = 2/2,df = 49.588
2R = 21 - /2,df = 12.256
The 98% confidence interval for 2 is,
(n - 1)s2 / 2/2 < 2 < (n - 1)s2 / 21 - /2
29 * 18.49 / 49.588 < 2 < 29 * 49.588 / 12.256
10.81 < 2 < 37.61
(10.81 , 37.61 )
The 98% confidence interval for is,
3.29 < < 6.13