Question

In: Statistics and Probability

Confirmed Cases CA: 18517, 3315, 2826, 2018, 1845, 1666, 1401, 1340, 1019 Confirmed Cases WA: 5637,...

Confirmed Cases CA: 18517, 3315, 2826, 2018, 1845, 1666, 1401, 1340, 1019

Confirmed Cases WA: 5637, 2243, 1212, 923, 383, 330, 293, 283, 282

The data you are being provided with relates to information collected about the current COVID-19 pandemic. You are being asked to analyze this “case” data

Identify Elements of Design

Various procedures used to create an experiment or correlational study (e.g. one-tailed test, random sample, etc...)

Fully demonstrated knowledge of concepts as required.

Solutions

Expert Solution

correlation between CA (x variabele)and WA (y variable)

         x= CA y =WA xy                  x^2         y^2

    18517.0   5637.0 104380329.0 342879289.0 31775769.0

    3315.0   2243.0    7435545.0   10989225.0 5031049.0

     2826.0   1212.0    3425112.0    7986276.0   1468944.0

     2018.0    923.0    1862614.0    4072324.0    851929.0

     1845.0    383.0     706635.0    3404025.0    146689.0

     1666.0    330.0     549780.0    2775556.0    108900.0

     1401.0    293.0     410493.0    1962801.0     85849.0

     1340.0    283.0     379220.0    1795600.0     80089.0

     1019.0    282.0     287358.0    1038361.0     79524.0

sum 33947.0 11586.0 119437086.0 376903457.0 39628742.0

   

                

       (1) Calculation:-   

           

                The pearson correlation coefficient r is computed using the following expression:

           

                     r = n(Σxy)-(Σx)(Σy)/sqrt[nΣx^2-(Σx)^2][nΣy^2-(Σy)^2]

      

                Also we can write it as,   

           

                     r = sigma_xy/sqrt(sigma_x*sigma_y)

       

In this case, based on the data provided, we compute that

sigma_xy = ∑ (xi)(yi) -( Σ xi * Σ yi)/n

= 119437086.0-33947.0*11586.0/9

sigma_xy = 75735991.362

sigma_x = Σ(xi^2) -( Σ(xi)^2)/n

= 376903457.0-33947.0^2/9

sigma_x =248859137.345

sigma_y = Σ(yi^2) -( Σ(yi)^2)/n

= 39628742.0-11586.0^2/9

                    sigma_y =24713705.724

                Therefore, based on this information, the sample correlation coefficient is computed as follows

r = sigma_xy/sqrt(sigma_x*sigma_y)

r = 75735991.362/sqrt(248859137.345*24713705.724)

r = 0.9657

                The following needs to be tested:

                   

      (2) State the Hypotheses:-

                

                    H0: ρ = 0

               

                    Ha: ρ ≠ 0

               

            where ρ corresponds to the population correlation

           

            Null Hypothesis H0: The population correlation coefficient IS NOT significantly different from zero.

                            There IS NOT a significant linear relationship (correlation) between X and Y in the population.

            Alternate Hypothesis Ha:The population correlation coefficient is significantly different from zero.

                            There is a significant linear relationship (correlation) between X and Y in the population.

     (3) Test statistic:-

              

                The sample size is n =9, so then the number of degrees of freedom is df = n-2 = 9 - 2 = 7

               

                The significance level of alpha = 0.05, for a two-tailed test is:

               

                        t_cal=r-ρ*((n-2)/(1-r^2))

               

                But ρ= 0 must be rejected.

               

                Therefore,

               

                        t_cal=r*sqrt((n-2)/(1-r^2))

               

                             = 0.9657*sqrt((9-2)/(1-0.9326))

                   

                        t_cal = 9.8415

       

      (4) Decision criteria:

       

          Using the P_value approach:-

       

            The P_value is 0.0,and since p_value = 0.0 < alpha = 0.05

            It is then concluded that the null hypothesis is rejected

      

    (5) Conclusion:-

           

            It is conclude that the null hypothesis H0 is rejected.

     Therefore,there is enough evidence to conclude that there is a significant linear relationship between

    CA and WA , correaltion coefficient is significantly different from zero"


Related Solutions

Confirmed Cases CA: 18517, 3315, 2826, 2018, 1845, 1666, 1401, 1340, 1019 Confirmed Cases WA: 5637,...
Confirmed Cases CA: 18517, 3315, 2826, 2018, 1845, 1666, 1401, 1340, 1019 Confirmed Cases WA: 5637, 2243, 1212, 923, 383, 330, 293, 283, 282 The data you are being provided with relates to information collected about the current COVID-19 pandemic. You are being asked to analyze this “case” data. Hypothesis Test Conclusion (i.e. Does score fall into the region of rejection; “significant” or “non-significant”; retain or reject Null, etc.; show probability equation found in the research literature)? Hypothesis Test Conclusion...
Confirmed Cases CA: 18517, 3315, 2826, 2018, 1845, 1666, 1401, 1340, 1019 Confirmed Cases WA: 5637,...
Confirmed Cases CA: 18517, 3315, 2826, 2018, 1845, 1666, 1401, 1340, 1019 Confirmed Cases WA: 5637, 2243, 1212, 923, 383, 330, 293, 283, 282 The data you are being provided with relates to information collected about the current COVID-19 pandemic. You are being asked to analyze this “case” data. Data Analysis (i.e. use SPSS to perform statistical calculations: t-obt, t-crit (p.256 textbook), p.value (type I error), copy-paste results)? Proper calculation and analysis of data using appropriate statistical procedures.
18517 150576 5637 3315 33798 2243 2826 31921 1212 2018 27231 923 1845 11091 383 1666...
18517 150576 5637 3315 33798 2243 2826 31921 1212 2018 27231 923 1845 11091 383 1666 7973 330 1401 2773 293 1340 2660 283 1019 1285 282 Row 1: confirmed cases CA row 2: confirmed cases Row 3: confirmed cases WA Your assignment is to analyze the relationship between two sets of scores using the inferential statistical procedure of an independent two sample t-hypothesis test. Using StatCrunch SPSS, you must calculate and analyze both descriptive and inferential statistics data. The...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT