In: Finance
Saving for their children’s education
To establish funds for a RESP (to be opened upon the birth of either Jack or Jill, whomever comes first) John has suggested purchasing bonds as a lower risk alternative to more volatile funds. John has identified a 20-year bond with a face value of $10,000 which pays a coupon rate of 9% compounded semi-annually. The bond has 15 years remaining until maturity and a current yield rate of 8%. John can purchase the bond for $10,125. Is this good value?
Price of Bond is nothing but PV of Cash flows from it. |
Bond Price Today:
Period | Cash Flow | PVF @4 % | Disc CF |
1 | $ 450.00 | 0.9615 | $ 432.69 |
2 | $ 450.00 | 0.9246 | $ 416.05 |
3 | $ 450.00 | 0.8890 | $ 400.05 |
4 | $ 450.00 | 0.8548 | $ 384.66 |
5 | $ 450.00 | 0.8219 | $ 369.87 |
6 | $ 450.00 | 0.7903 | $ 355.64 |
7 | $ 450.00 | 0.7599 | $ 341.96 |
8 | $ 450.00 | 0.7307 | $ 328.81 |
9 | $ 450.00 | 0.7026 | $ 316.16 |
10 | $ 450.00 | 0.6756 | $ 304.00 |
11 | $ 450.00 | 0.6496 | $ 292.31 |
12 | $ 450.00 | 0.6246 | $ 281.07 |
13 | $ 450.00 | 0.6006 | $ 270.26 |
14 | $ 450.00 | 0.5775 | $ 259.86 |
15 | $ 450.00 | 0.5553 | $ 249.87 |
16 | $ 450.00 | 0.5339 | $ 240.26 |
17 | $ 450.00 | 0.5134 | $ 231.02 |
18 | $ 450.00 | 0.4936 | $ 222.13 |
19 | $ 450.00 | 0.4746 | $ 213.59 |
20 | $ 450.00 | 0.4564 | $ 205.37 |
21 | $ 450.00 | 0.4388 | $ 197.48 |
22 | $ 450.00 | 0.4220 | $ 189.88 |
23 | $ 450.00 | 0.4057 | $ 182.58 |
24 | $ 450.00 | 0.3901 | $ 175.55 |
25 | $ 450.00 | 0.3751 | $ 168.80 |
26 | $ 450.00 | 0.3607 | $ 162.31 |
27 | $ 450.00 | 0.3468 | $ 156.07 |
28 | $ 450.00 | 0.3335 | $ 150.06 |
29 | $ 450.00 | 0.3207 | $ 144.29 |
30 | $ 450.00 | 0.3083 | $ 138.74 |
30 | $ 10,000.00 | 0.3083 | $ 3,083.19 |
Price of Bond | $ 10,864.60 |
PVF(r%, n) = 1 / ( 1 + r)^n
r = Int rate per period
n = No. of periods
Pls do rate, if the answer is correct and comment, if any further assistance is required.