Question

In: Statistics and Probability

Assume that sample data, based on two independent samples of size n1=41 and n2=90, give us...

Assume that sample data, based on two independent samples of size n1=41 and n2=90, give us top enclose x subscript 1= 3.61, top enclose x subscript 2= 2.95, s1 = 0.19, and s2 = 0.22. Assume unequal population variances. Find 95% confidence interval for u2-u1. Conduct a test of hypotheses as an alternative to the method in the previous part. Provide the null and alternative hypotheses, test statistic, P-value and conclusion at 0.05 level.

Solutions

Expert Solution

Solution:-

a) 95% confidence interval for u2-u1 is C.I = (0.5846, 0.7345).

C.I = 0.66 + 1.979 × 0.03766

C.I = 0.66 + 0.07453

C.I = (0.5846, 0.7345)

b)

State the hypotheses. The first step is to state the null hypothesis and an alternative hypothesis.

Null hypothesis: u1 = u 2
Alternative hypothesis: u1 \neq u 2

Note that these hypotheses constitute a two-tailed test. The null hypothesis will be rejected if the difference between sample means is too big or if it is too small.

Formulate an analysis plan. For this analysis, the significance level is 0.05. Using sample data, we will conduct a two-sample t-test of the null hypothesis.

Analyze sample data. Using sample data, we compute the standard error (SE), degrees of freedom (DF), and the t statistic test statistic (t).

SE = sqrt[(s12/n1) + (s22/n2)]
SE = 0.03766
DF = 129
t = [ (x1 - x2) - d ] / SE

t = 17.53

where s1 is the standard deviation of sample 1, s2 is the standard deviation of sample 2, n1 is the size of sample 1, n2 is the size of sample 2, x1 is the mean of sample 1, x2 is the mean of sample 2, d is the hypothesized difference between the population means, and SE is the standard error.

Since we have a two-tailed test, the P-value is the probability that a t statistic having 129 degrees of freedom is more extreme than -17.53; that is, less than -17.53 or greater than 17.53.

Thus, the P-value = less than 0.0001

Interpret results. Since the P-value (almost 0) is less than the significance level (0.05), we cannot accept the null hypothesis.


Related Solutions

Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have been taken from two normally distributed populations having variances σ12 and σ22 give sample variances of s12 = 117 and s22 = 19. (a) Test H0: σ12 = σ22 versus Ha: σ12 ≠ σ22 with σ = .05. What do you conclude? (Round your answers to 2 decimal places.) F = F.025 = H0:σ12 = σ22 (b) Test H0: σ12 < σ22versus Ha: σ12...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have been taken from two normally distributed populations having variances σ12 and σ22 give sample variances of s12 = 94 and s22 = 13. (a) Test H0: σ12 = σ22 versus Ha: σ12 ≠ σ22 with σ = .05. What do you conclude? (Round your answers to 2 decimal places.) F = F.025 = H0:σ12 = σ22 (b) Test H0: σ12 < σ22versus Ha: σ12...
Independent random samples of sizes n1 = 307 and n2 = 309 were taken from two...
Independent random samples of sizes n1 = 307 and n2 = 309 were taken from two populations. In the first sample, 92 of the individuals met a certain criteria whereas in the second sample, 108 of the individuals met the same criteria. Test the null hypothesis H0:p1=p2versus the alternative hypothesis HA:p1<p2. a)  Calculate the z test statistic, testing the null hypothesis that the population proportions are equal. Round your response to at least 3 decimal places.      b) What is the...
Independent random samples of sizes n1 = 202 and n2 = 210 were taken from two...
Independent random samples of sizes n1 = 202 and n2 = 210 were taken from two populations. In the first sample, 170 of the individuals met a certain criteria whereas in the second sample, 178 of the individuals met the same criteria. Test the null hypothesis H0:p1=p2versus the alternative hypothesis HA:p1>p2. a)  Calculate the z test statistic, testing the null hypothesis that the population proportions are equal. Round your response to at least 3 decimal places.      b) What is the...
Consider two independent random samples with the following results: n1=532x1=390    n2=730x2=139 Use this data to find...
Consider two independent random samples with the following results: n1=532x1=390    n2=730x2=139 Use this data to find the 90% confidence interval for the true difference between the population proportions. Step 1 of 3: Find the point estimate that should be used in constructing the confidence interval. Round your answer to three decimal places. Step 2 of 3: Find the margin of error. Round your answer to six decimal places. Step 3 of 3: Construct the 90% confidence interval. Round your answers...
Given two independent random samples with the following results: n1=233 pˆ1=0.63    n2=435 pˆ2=0.76 Use this data...
Given two independent random samples with the following results: n1=233 pˆ1=0.63    n2=435 pˆ2=0.76 Use this data to find the 95% confidence interval for the true difference between the population proportions. Step 1 of 3: Find the critical value that should be used in constructing the confidence interval. Step 2 of 3: Find the value of the standard error. Round your answer to three decimal places. Step 3 of 3: Construct the 95% confidence interval. Round your answers to three decimal...
Given two independent random samples with the following results: n1=590, pˆ1=0.85, n2=414, pˆ2=0.59 Use this data...
Given two independent random samples with the following results: n1=590, pˆ1=0.85, n2=414, pˆ2=0.59 Use this data to find the 99% confidence interval for the true difference between the population proportions. Step 1 of 3: Find the critical value that should be used in constructing the confidence interval. Step 2 of 3: Find the value of the standard error. Round your answer to three decimal places. Step 3 of 3: Construct the 99% confidence interval. Round your answers to three decimal...
Consider two independent random samples with the following results: n1=561 pˆ1=0.38   n2=642 pˆ2=0.26 Use this data...
Consider two independent random samples with the following results: n1=561 pˆ1=0.38   n2=642 pˆ2=0.26 Use this data to find the 98% confidence interval for the true difference between the population proportions. Step 2 of 3 : Find the margin of error. Round your answer to six decimal places. Can you explain how I get the critical value and then how to find the endpoints.
Consider two independent random samples with the following results: n1=158        n2=101 x1=136    x2=45 Use this data...
Consider two independent random samples with the following results: n1=158        n2=101 x1=136    x2=45 Use this data to find the 90% confidence interval for the true difference between the population proportions. Step 1 of 3: Find the point estimate that should be used in constructing the confidence interval. Round your answer to three decimal places Step 2 of 3: Find the margin of error. Round your answer to six decimal places. Step 3 of 3: Construct the 90% confidence interval. Round...
independent random sample of size n1=16 and n2= 25 from a normal population with standard deviation1=4.8...
independent random sample of size n1=16 and n2= 25 from a normal population with standard deviation1=4.8 and standard deviation 2=3.5 have the mean x bar1=18.2 and xbar2=23.4 find the 90% confidence interval for mew1-mew 2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT