Question

In: Statistics and Probability

Independent random samples of sizes n1 = 307 and n2 = 309 were taken from two...

Independent random samples of sizes n1 = 307 and n2 = 309 were taken from two populations. In the first sample, 92 of the individuals met a certain criteria whereas in the second sample, 108 of the individuals met the same criteria.

Test the null hypothesis H0:p1=p2versus the alternative hypothesis HA:p1<p2.

a)  Calculate the z test statistic, testing the null hypothesis that the population proportions are equal.

Round your response to at least 3 decimal places.

    

b) What is the approximate value of the p-value?

Round your response to at least 3 decimal places.

   

c)  What is the appropriate conclusion that can be made?

There is sufficient evidence to reject the null hypothesis at the 5% level of significance, but insufficienct evidence to reject the null hypothesis at the 10% level of significance.
There is insufficient evidence to reject the null hypothesis at both the 5% and 10% levels of significance.
There is sufficient evidence to reject the null hypothesis at the 10% level of significance, but insufficient evidence to reject the null hypothesis at the 5% level of significance.
There is sufficient evidence to reject the null hypothesis at both the 10% and 5% levels of significance.

Solutions

Expert Solution

n1 = 307 ,  n2 = 309

x1= 92, x2= 108

Ho:p1​=p2​

Ha:p1​<p2​

a)  Calculate the z test statistic

Z = -1.321

test statistic = -1.321

b) Calculate the p-value

P-Value = P(Z < -1.321)

find P(Z < -1.321) using normal z table we get

P(Z < -1.321) = 0.0933

P-Value = 0.0933

c)

now if = 0.05

(P-Value = 0.0933) > ( = 0.05)

then null hypothesis is not rejected.

now if = 0.10

(P-Value = 0.0933) <  ( = 0.10)

then null hypothesis is rejected.

There is sufficient evidence to reject the null hypothesis at the 10% level of significance, but insufficient evidence to reject the null hypothesis at the 5% level of significance.


Related Solutions

Independent random samples of sizes n1 = 202 and n2 = 210 were taken from two...
Independent random samples of sizes n1 = 202 and n2 = 210 were taken from two populations. In the first sample, 170 of the individuals met a certain criteria whereas in the second sample, 178 of the individuals met the same criteria. Test the null hypothesis H0:p1=p2versus the alternative hypothesis HA:p1>p2. a)  Calculate the z test statistic, testing the null hypothesis that the population proportions are equal. Round your response to at least 3 decimal places.      b) What is the...
Q2) Independent random samples of sizes n1 = 208 and n2 = 209 were taken from...
Q2) Independent random samples of sizes n1 = 208 and n2 = 209 were taken from two populations. In the first sample, 172 of the individuals met a certain criteria whereas in the second sample, 181 of the individuals met the same criteria. Test the null hypothesis H0:p1=p2versus the alternative hypothesis HA:p1>p2. a) Calculate the z test statistic, testing the null hypothesis that the population proportions are equal. Round your response to at least 2 decimal places. b) What is...
(S 11.1) Random samples of sizes n1 = 404 and n2 = 310 were taken from...
(S 11.1) Random samples of sizes n1 = 404 and n2 = 310 were taken from two independent populations. In the first sample, 107 of the individuals met a certain criteria whereas in the second sample, 135 of the individuals met the same criteria. Run a 2PropZtest to test whether the proportions are different, and answer the following questions. What is the value of p?, the pooled sample proportion?Round your response to at least 3 decimal places. Calculate the z...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have been taken from two normally distributed populations having variances σ12 and σ22 give sample variances of s12 = 117 and s22 = 19. (a) Test H0: σ12 = σ22 versus Ha: σ12 ≠ σ22 with σ = .05. What do you conclude? (Round your answers to 2 decimal places.) F = F.025 = H0:σ12 = σ22 (b) Test H0: σ12 < σ22versus Ha: σ12...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have...
Suppose two independent random samples of sizes n1 = 9 and n2 = 7 that have been taken from two normally distributed populations having variances σ12 and σ22 give sample variances of s12 = 94 and s22 = 13. (a) Test H0: σ12 = σ22 versus Ha: σ12 ≠ σ22 with σ = .05. What do you conclude? (Round your answers to 2 decimal places.) F = F.025 = H0:σ12 = σ22 (b) Test H0: σ12 < σ22versus Ha: σ12...
Independent random samples of n1 = 700 and n2 = 520 observations were selected from binomial...
Independent random samples of n1 = 700 and n2 = 520 observations were selected from binomial populations 1 and 2, and x1 = 335 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.)
Independent random samples of n1 = 800 and n2 = 670 observations were selected from binomial...
Independent random samples of n1 = 800 and n2 = 670 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) to (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.)nq̂ > 5 for samples from both populationssymmetrical...
3. Independent random samples of n1 = 16 and n2 = 13 observations were selected from...
3. Independent random samples of n1 = 16 and n2 = 13 observations were selected from two normal populations with equal variances. The sample means and variances are shown below: Population 1 Population 2 Sample size 16 13 Sample mean 34.6 32.2 Sample variance 4.0 4.84 a) Suppose you wish to test if there is difference between the population means with significance level of α = 0.05. State the null and alternative hypotheses that you use for the test. b)...
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations...
Independent random samples of n1 = 800  and n2 = 610 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) _______ to _______/ (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.) independent random samples symmetrical distributions for...
1. Independent random samples of n1 = 200 and n2 = 200 observations were randomly selected...
1. Independent random samples of n1 = 200 and n2 = 200 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 116 successes, and sample 2 had 122 successes. a) Calculate the standard error of the difference in the two sample proportions, (p̂1 − p̂2). Make sure to use the pooled estimate for the common value of p. (Round your answer to four decimal places.) b) Critical value approach: Find the rejection region when α...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT