In: Advanced Math
1. Give an example of a 3rd order nonlinear ordinary differential equation.
The third order non linear orfinary differential equation is
Y"'(t) + a(Y"(t))^2+ b(Y'(t))^3
To solve this eqn
Substitute z=y′z=y′
z′′(t)+a(z′(t))2+bz3=0z″(t)+a(z′(t))2+bz3=0
Substitute p=z′p=z′
dpdzp+ap2+bz3=0dpdzp+ap2+bz3=0
12(p2)′+ap2+bz3=012(p2)′+ap2+bz3=0
Finally substitute w=p2w=p2
12w′+aw+bz3=012w′+aw+bz3=0
Bernouilli's equationAs a more general solution, if you have an equation of the form
x′′(t)+a(x(t))x′(t)2+b(x(t))=0x″(t)+a(x(t))x′(t)2+b(x(t))=0
then you can make the substitution f(x)=x′(t)2f(x)=x′(t)2 to arrive at the equation
12f′(x)+a(x)f(x)+b(x)=012f′(x)+a(x)f(x)+b(x)=0
Letting μ(x)=exp[∫a(x)dx]μ(x)=exp[∫a(x)dx], we can solve for f(x)f(x):
f(x)=μ(x)−1(C1−2∫μ(x)b(x)dx)f(x)=μ(x)−1(C1−2∫μ(x)b(x)dx)
which can be substituted back for x(t)x(t):
x′=μ(x)−1/2(C1−2∫μ(x)b(x)dx)1/2x′=μ(x)−1/2(C1−2∫μ(x)b(x)dx)1/2
and solved implicitly:
C2+t−∫[μ(x)(C1−2∫μ(x)b(x)dx)−1]1/2dx=0
Some more examples of 3rd order non linear eqn are
Y"' = aY^5/2+ bY^7/2 etc