Question

In: Advanced Math

Determine the solution of a homogeneous linear first order Ordinary Differential Equation system: (use 2 methods,...

Determine the solution of a homogeneous linear first order Ordinary Differential Equation system: (use 2 methods, substitution method, and matrix method)

  1. x1' = - 4x1-6x2

           x2' = x1+ x2

With the initial values: x1 (0) = 2 ; x2 (0) = -1

b.  x1' = -x2

             x2' = -x1

With initial values: x1 (0) = 3 ; x2 (0) = 1

Solutions

Expert Solution


Related Solutions

find the general solution to the second order linear non-homogeneous differential equation (y"/2)-y' +y = cos...
find the general solution to the second order linear non-homogeneous differential equation (y"/2)-y' +y = cos x
Find the particular solution of the first-order linear differential equation for x > 0 that satisfies...
Find the particular solution of the first-order linear differential equation for x > 0 that satisfies the initial condition. (Remember to use absolute values where appropriate.) Differential Equation Initial Condition x dy = (x + y + 7) dx y(1) = 6 y =
Writing Prompt(s) One method for solving a system of first order linear differential equation such as...
Writing Prompt(s) One method for solving a system of first order linear differential equation such as x ′ = a x + b y y ′ = c x + d y is to take the derivative of the first equation and use the second equation to ``decouple'' the system and create a second order equation, which we can solve using our previous techniques. Does this always work? If not, what conditions on the constants a, b, c, and d...
Question 4: Homogeneous Second Order Differential equation Solve the following equation for the particular solution. i....
Question 4: Homogeneous Second Order Differential equation Solve the following equation for the particular solution. i. 2?′′ + 5?′ + 3? = 0; ?(0)=3, ?′(0)=−4 ii. 4 (?2?/??2) + 8 (??/??) + 3y = 0 ?(0)=1, ?′(0)=2 iii. ?′′ + 6?′ + 13? = 0; ?(0)=2, ?′(0)=1
Write the second order differential equation as a system of two linear differential equations then solve...
Write the second order differential equation as a system of two linear differential equations then solve it. y" + y' - 6y = e^-3t y(0) =0   y'(0)=0
Determine the reasonable form of the particular solution for each non homogeneous differential equation. Do not...
Determine the reasonable form of the particular solution for each non homogeneous differential equation. Do not solve it. a) y''-y'-2y= e^-x+xcos2x+e^xsin2x. b) D^2[y] +4y =1+x^2+xsin2x.
A 2nd order homogeneous linear differential equation has odd-even parity. Prove that if one of its...
A 2nd order homogeneous linear differential equation has odd-even parity. Prove that if one of its solutions is an even function and the other can be constructed as an odd function.
Question 16: What is the general solution of the following homogeneous second-order differential equation? Non-integers are...
Question 16: What is the general solution of the following homogeneous second-order differential equation? Non-integers are expressed to one decimal place. d^2y/dx^2 − 11.y = 9 (a) y = Ae -3.3.x + Be 3.3.x + 0.82 (b) y = Ae -3.3.x + Be 3.3.x - 0.82 (c) y = e3.3.x (Ax + B)+0.82 (d) y = e3.3.x (Ax + B)- 0.82 Question 17: What is the general solution of the following homogeneous second order differential equation? d^2y/dx^2 + 3dy/dx −...
Find a particular solution to the non-homogeneous differential equation: (a) y'' − 4y = 4t^2 (b)...
Find a particular solution to the non-homogeneous differential equation: (a) y'' − 4y = 4t^2 (b) y '' − 4y = sin(2t) (c) y '' + 4y = sin(2t) (d) y '' + y = cos(t)
Use the Method of Variation of Parameters to determine the general solution of the differential equation...
Use the Method of Variation of Parameters to determine the general solution of the differential equation y'''-y'=3t
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT