In: Statistics and Probability
A normal random variable x has mean ? = 1.6 and standard deviation ? = 0.17. Find the probability associated with each of the following intervals. (Round your answers to four decimal places.)
(a)
1.00 < x < 1.20
(b)
x > 1.37
(c)
1.35 < x < 1.50
Solution :
Given that ,
mean = = 1.6
standard deviation = = 0.17
(a)
P(1.00 < x < 1.20) = P((1.00 - 1.6 / 0.17) < (x - ) / < (1.20 - 1.6) / 0.17) )
P(1.00 < x < 1.20) = P(-3.53 < z < -2.35)
P(1.00 < x < 1.20) = P(z < -2.35) - P(z < -3.53) = 0.0094 - 0.0002 = 0.0092
Probability = 0.0092
(b)
P(x > 1.37) = 1 - P(x < 1.37)
= 1 - P((x - ) / < (1.37 - 1.6) / 0.17)
= 1 - P(z < -1.35)
= 1 - 0.0885
= 0.9115
P(x > 1.37) = 0.9115
Probability = 0.9115
(c)
P(1.35 < x < 1.50) = P((1.35 - 1.6 / 0.17) < (x - ) / < (1.50 - 1.6) / 0.17) )
P(1.35 < x < 1.50) = P(-1.47 < z < -0.59)
P(1.35 < x < 1.50) = P(z < -0.59) - P(z < -1.47) = 0.2776 - 0.0708 = 0.2068
Probability = 0.2068