In: Statistics and Probability
A normal random variable x has mean ? = 1.6 and standard deviation ? = 0.17. Find the probability associated with each of the following intervals. (Round your answers to four decimal places.)
(a)
1.00 < x < 1.30
(b)
x > 1.32
(c)
1.25 < x < 1.50
Solution :
Given that ,
mean = = 1.6
standard deviation = = 0.17
(a)
P(1 < x < 1.30) = P((1 - 1.6 / 0.17) < (x - ) / < (1.30 - 1.6) / 0.17) )
P(1 < x < 1.30) = P(-3.53 < z < -1.76)
P(1 < x < 1.30) = P(z < -1.76) - P(z < -3.53)
P(1 < x < 1.30) = 0.0392 - 0.0002 = 0.0390
Probability = 0.0390
(b)
P(x > 1.32) = 1 - P(x < 1.32)
= 1 - P((x - ) / < (1.32 - 1.6) / 0.17)
= 1 - P(z < -1.647)
= 1 - 0.0498
= 0.9502
P(x > 1.32) = 0.9502
Probability = 0.9502
(c)
P(1.25 < x < 1.50) = P((1.25 - 1.6 / 0.17) < (x - ) / < (1.50 - 1.6) / 0.17) )
P(1.25 < x < 1.50) = P(-2.059 < z < -0.588)
P(1.25 < x < 1.50) = P(z < -0.588) - P(z < -2.059)
P(1.25 < x < 1.50) = = 0.2783 - 0.0197 = 0.2586
Probability = 0.2586