In: Computer Science
Do the following proofs deductively. Justify each step in your proof with a law or inference rule.
a) If P ⇒ Q, ¬R ⇒¬Q, and P then prove R.
b) If P ⇒ (Q ∧ R) and ¬R ∧ Q then prove ¬P.
a) (P Q)
( ¬R
¬Q)
P
(¬P V Q) ( ¬(¬R) V ¬Q)
P {
Law of Implies (A
B)
= ¬AVB }
(¬P V Q) ( R V ¬Q)
P { By
Demorgan's law ¬( ¬A) = A }
.(¬P V Q) ( ¬Q V R)
P { Commutative
law A V B = B V A }
.¬P V (Q ¬Q) V R
P { Associative
law (A V B) V C = A V ( B V C ) }
.¬P V (F) V R P {
We know that A
¬A =
F }
.¬P V P (F) V R {
Commutative law A V B = B V A }
.(¬P V P) (F) V
R { Associative law (A V B) V C = A V ( B V C
) }
.(T) (F) V R { We
know that A V ¬A = T }
.(T F) V
R
.( F) V R { We know that
T F = F
}
R { We know that F V A = A }
Hence Proved
b) P (Q
R)
(¬R
∧ Q)
P Q
(R
¬R) ∧
Q { Associative law (A V B) V C = A V ( B V C
) }
P Q
(F)
Q { We
know that A
¬A =
F }
P Q
Q
(F)
{ Commutative law A V B = B V A }
P ( Q
Q )
(F)
P ( Q)
(F) {
We know that A
A = A
}
¬P V ( Q)
(F) { Law of Implies (A
B)
= ¬AVB }
¬P V ( Q
F)
¬P V ( F) { We know that A
F = F
}
(¬P V F)
¬P { We know that F V ¬A = ¬A }
Hence Proved