In: Computer Science
Do the following proofs deductively. Justify each step in your proof with a law or inference rule.
a) If P ⇒ Q, ¬R ⇒¬Q, and P then prove R.
b) If P ⇒ (Q ∧ R) and ¬R ∧ Q then prove ¬P.
a) (P 
 Q)
 ( ¬R 
¬Q)
 P
(¬P V Q) 
 ( ¬(¬R) V ¬Q)
 P  {
Law of Implies (A
B)
= ¬AVB }
(¬P V Q) 
 ( R V ¬Q)
 P { By
Demorgan's law ¬( ¬A) = A }
.(¬P V Q) 
 ( ¬Q V R)
 P { Commutative
law A V B = B V A }
.¬P V (Q 
 ¬Q) V R
 P { Associative
law (A V B) V C  = A V ( B V C ) }
.¬P V (F) V R 
 P  {
We know that A 
  ¬A =
F }
.¬P V P 
 (F) V R {
Commutative law A V B = B V A }
.(¬P V P) 
 (F) V
R  { Associative law (A V B) V C  = A V ( B V C
) }
.(T) 
 (F) V R { We
know that A V ¬A = T }
.(T 
 F) V
R
.( F) V R { We know that
T 
 F = F
}
R { We know that F V A = A }
Hence Proved
b) P 
 (Q
 R) 
 (¬R
∧ Q)
P 
 Q 
 (R
 ¬R) ∧
Q  { Associative law (A V B) V C  = A V ( B V C
) }
P 
 Q 
 (F)
Q { We
know that A 
  ¬A =
F }
P 
 Q 
Q
 (F)
  { Commutative law A V B = B V A }
P 
( Q
Q ) 
(F)
P 
( Q)
 (F)  {
We know that A 
 A = A
}
¬P V ( Q) 
(F)   { Law of Implies (A
B)
= ¬AVB }
¬P V ( Q 
F)  
¬P V ( F)  { We know that A
 F = F
}
(¬P V F)
¬P { We know that F V ¬A = ¬A }
Hence Proved