In: Statistics and Probability
Prove the following equivalences without using truth tables, and specify at each step of your proof the equivalence law you are using.
(a) ¬ (p ∨ (¬ p ∧ q)) ≡ ¬ p ∧ ¬ q
(b) ( x → y) ∧ ( x → z) ≡ x → ( y ∧ z)
(c) (q → (p → r)) ≡ (p → (q → r))
(d) ( Q → P) ∧ ( ¬Q → P) ≡ P
a.
¬ (p ∨ (¬ p ∧ q)) ≡ ¬ p ∧ ¬ q
{de morgan law}
¬p ∧ ¬(¬ p ∧ q)) ≡ ¬ p ∧ ¬ q
{de morgan law}
¬p ∧ (¬(¬p) ∨ ¬ q)) ≡ ¬ p ∧ ¬ q
{double negation law}
¬p ∧ (p ∨ ¬ q)) ≡ ¬ p ∧ ¬ q
{distributive law}
(¬p ∧ p) ∨ (¬p ∧ ¬ q) ≡ ¬ p ∧ ¬ q
{negation law}
F ∨ (¬p ∧ ¬ q) ≡ ¬ p ∧ ¬ q
{identity law}
(¬p ∧ ¬ q) ≡ ¬ p ∧ ¬ q
hence proved
b.
(¬ x ∨ y) ∧ (¬ x ∨ z) = (¬ x ∨ (y∧z))
{distributive law}
(¬ x ∨ y) ∧ (¬ x ∨ z) = (¬ x ∨ y) ∧ (¬ x ∨ z)
hence proved
c.
(¬q ∨ (¬ p ∨ r)) ≡ (¬ p ∨ (¬q ∨ r))
{associative law}
((¬q ∨ ¬ p) ∨ r) ≡ (¬ p ∨ (¬q ∨ r))
{commutative law}
((¬p ∨ ¬ q) ∨ r) ≡ (¬ p ∨ (¬q ∨ r))
{associative law}
(¬ p ∨ (¬q ∨ r)) ≡ (¬ p ∨ (¬q ∨ r))
hence proved
d.
( ¬Q ∨ P) ∧ ( ¬(¬Q)∨ P) ≡ P
{DOUBLE NEGATION LAW}
( ¬Q ∨ P) ∧ ( Q∨ P) ≡ P
{reverse distributive law : ( r ∨ q) ∧ ( p∨ q) ≡ ( r ∧ p)∨q }
( ¬Q ∧ Q) ∨ P ≡ P
{negation law}
F ∨ P ≡ P
{identity law}
P ≡ P
hence proved