In: Advanced Math
Consider the ODE y"+ 4 y'+ 4 y = 5 e^(− 2 x ). (
a) Verify that y 1 ( x) = e − 2 x and y 2 ( x) = xe − 2 x satisfy the corresponding homogeneous equation.
(b) Use the Superposition Principle, with appropriate coefficients, to state the general solution y h ( x ) of the corresponding homogeneous equation.
(c) Verify that y p ( x) = 52 x 2 e − 2 x is a particular solution to the given nonhomogeneous ODE.
(d) Use the Nonhomogeneous Principle to write the general solution y ( x ) to the nonhomogeneous ODE.
(e) Solve the IVP consisting of the nonhomogeneous ODE and the initial conditions y(0) = 1 , y 0 (0) = − 1 .