Question

In: Advanced Math

Consider the ODE y"+ 4 y'+ 4 y = 5 e^(− 2 x ). ( a)...

Consider the ODE y"+ 4 y'+ 4 y = 5 e^(− 2 x ). (

a) Verify that y 1 ( x) = e − 2 x and y 2 ( x) = xe − 2 x satisfy the corresponding homogeneous equation.

(b) Use the Superposition Principle, with appropriate coefficients, to state the general solution y h ( x ) of the corresponding homogeneous equation.

(c) Verify that y p ( x) = 52 x 2 e − 2 x is a particular solution to the given nonhomogeneous ODE.

(d) Use the Nonhomogeneous Principle to write the general solution y ( x ) to the nonhomogeneous ODE.

(e) Solve the IVP consisting of the nonhomogeneous ODE and the initial conditions y(0) = 1 , y 0 (0) = − 1 .

Solutions

Expert Solution


Related Solutions

E(Y) = 4, E(X) = E(Y+2), Var(X) = 5, Var(Y) = Var(2X+2) a. What is E(2X...
E(Y) = 4, E(X) = E(Y+2), Var(X) = 5, Var(Y) = Var(2X+2) a. What is E(2X -2Y)? b. What is Var(2X-Y+2)? c. What is SD(3Y-3X)? 2) In a large community, 65% of the residents want to host an autumn community fair. The rest of the residents answer either disagree or no opinion on this proposal. A sample of 18 residents was randomly chosen and asked for their opinions. a) What is th probability that the residents answer either disagree or...
Solve the ODE y"+3y'+2y=(cosx)+(x^2)+(e^-1)
Solve the ODE y"+3y'+2y=(cosx)+(x^2)+(e^-1)
Consider the non linear ODE: (dx/dt) = -y = f(x,y) (dy/dt) = x^2-x = g(x,y) (a)....
Consider the non linear ODE: (dx/dt) = -y = f(x,y) (dy/dt) = x^2-x = g(x,y) (a). Compute all critical points (b) Derive the Jacobian matrix (c). Find the Jacobians for each critical point (d). Find the eigenvalues for each Jacobian matrix (e). Find the linearized solutions in the neighborhood of each critical point (f) Classify each critical point and discuss their stability (g) Sketch the local solution trajectories in the neighborhood of each critical point
Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x...
Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x .
Given: E[x] = 4, E[y] = 6, Var(x) = 2, Var(y) = 1, and cov(x,y) =...
Given: E[x] = 4, E[y] = 6, Var(x) = 2, Var(y) = 1, and cov(x,y) = 0.2 Find a lower bound on (5 < x + y < 10). State the theorem used.
Consider the following first-order ODE dy/dx=x^2/y from x = 0 to x = 2.4 with y(0)...
Consider the following first-order ODE dy/dx=x^2/y from x = 0 to x = 2.4 with y(0) = 2. (a) solving with Euler’s explicit method using h = 0.6 (b) solving with midpoint method using h = 0.6 (c) solving with classical fourth-order Runge-Kutta method using h = 0.6. Plot the x-y curve according to your solution for both (a) and (b).
Find the general solution to the ODE y'' − y'/x − 4x^2y = x^2 sinh(x^2)
Find the general solution to the ODE y'' − y'/x − 4x^2y = x^2 sinh(x^2)
. Find the general solution to the ODE: x^2 y" + 5xy' + 3y = x^2
. Find the general solution to the ODE: x^2 y" + 5xy' + 3y = x^2
Consider the region bounded between y = 3 + 2x - x^2 and y = e^x...
Consider the region bounded between y = 3 + 2x - x^2 and y = e^x + 2 . Include a sketch of the region (labeling key points) and use it to set up an integral that will give you the volume of the solid of revolution that is obtained by revolving the shaded region around the x-axis, using the... (a) Washer Method (b) Shell Method (c) Choose the integral that would be simplest to integrate by hand and integrate...
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6,...
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6, 5 By hand, not using Matlab, and showing your work: (a) Compute the correlation coefficient. (b) Find the least-squares line. (c) Find the standard deviation around the least-squares line.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT