Question

In: Computer Science

IN JAVA Given a binary search tree, extract min operation finds the node with minimum key...

IN JAVA

Given a binary search tree, extract min operation finds the node with minimum key and then takes it out of the tree. The program can be C++/Java or C-style pseudocode. Do not use function call to either Min or delete done in the class. Write this from scratch. (No need to ensure AVL properties, just show it for a generic BST)

Node * extract min(Node * x) {

}

Solutions

Expert Solution

A binary search tree, extract min operation finds the node with minimum key and then takes it out of the tree. The program can be C++/Java or C-style pseudocode.


Explanation:

Your Explanation :

------------------------

In a BST, the lowest key is the leftmost node. So the algorithm is to move left as long as there is a left child, and return the node having no left child.

The pseudo code using c-style is as follows (using recursion):

Node * extract_min(Node * x) {

   /* Case 1: empty tree */

   if(x == NULL)

       return NULL;

   /* Case 2: this is the leftmost, i.e. lowest key */

   if(x->left == NULL)

       return x;

   /* Case 3 (recursive case): left subtree exists, recurse on it */

   return extract_min(x->left);

}

A non-recursive iterative version is as follows:

Node * extract_min(Node * x) {

   Node * n = x;

   if(x == NULL)

       return NULL;

   while(n->left != NULL)

       n = n->left;

   return n;

}


Related Solutions

You are given a reference to the root node of a binary search tree, that implements...
You are given a reference to the root node of a binary search tree, that implements a dictionary data structure. Please print all the elements in depths 500 through 510, all in sorted order. A node in a binary search tree is at depth x, if it takes x hops to get from the root. So the root is at depth 0, the children of the root are at depth 1, and so on. The class TreeNode defines a single...
You are given a reference to the root node of a binary search tree, that implements...
You are given a reference to the root node of a binary search tree, that implements a dictionary data structure. Please print all the elements in depths 500 through 510, all in sorted order. A node in a binary search tree is at depth x, if it takes x hops to get from the root. So the root is at depth 0, the children of the root are at depth 1, and so on. The class TreeNode defines a single...
Create a binary search tree of stacks where each node contains a key and a stack.
IN C++   Create a binary search tree of stacks where each node contains a key and a stack. In this binary search tree, when adding a new element to the tree it is inserted based off of its key value; if that key value already exist then the element is pushed into the stack at that location, if the key value does not exist a node element is added to the tree to reflect that key, and a empty...
Write a binary search tree with 10 nodes in Java, each node will have 3 attributes...
Write a binary search tree with 10 nodes in Java, each node will have 3 attributes (data, x, y). The binary tree need to have function "add()" to add new node into the tree. After added all 10 nodes, it will be sorted and turn into a balanced binary search tree.
In java, create a binary search tree (without using additional libraries) of stacks where each node...
In java, create a binary search tree (without using additional libraries) of stacks where each node contains a key and a stack. In this binary search tree, when adding a new element to the tree it is inserted based off of its key value; if that key value already exist then the element is pushed into the stack at that location, if the key value does not exist a node element is added to the tree to reflect that key,...
PYTHON CODING Using the structural node and methods discussed in Binary Search Tree below # Binary...
PYTHON CODING Using the structural node and methods discussed in Binary Search Tree below # Binary Tree Node structure class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None class BSTree(): def __init__(self, rootdata): self.root = Node(rootdata)    def insert(self, data, cur_node): if data < cur_node.data: if cur_node.left == None: cur_node.left = Node(data) else: self.insert(data, cur_node.left)    elif data > cur_node.data: if cur_node.right == None: cur_node.right = Node(data) else:...
1. Draw a binary search tree as a single root node holding a string as the...
1. Draw a binary search tree as a single root node holding a string as the data element. Each string inserted into a node in the tree will be for a character in a game. Then, draw a new tree each time you insert a new node into the tree holding a string Insert 4 nodes total, including the root. This means the new nodes will need to be inserted at the correct child to maintain the BST property.
Implement a function to find a node in a binary search tree. Using the following class...
Implement a function to find a node in a binary search tree. Using the following class and function definition. If a node with a matching value is found, return a pointer to it. If no match is found, return nullptr. #include <iostream> class BTNode { public: int item; BTNode *left; BTNode *right; BTNode(int i, BTNode *l=nullptr, BTNode *r=nullptr):item(i),left(l),right(r){} }; BTNode *root = nullptr; BTNode *find(int item) { //implement code here return nullptr; } int main() {    root = new...
Prerequisite Knowledge Understand binary search tree structure Understand binary search tree operations Understand binary search tree...
Prerequisite Knowledge Understand binary search tree structure Understand binary search tree operations Understand binary search tree worst case and best case time. Learning Outcomes Describe AVL tree structure Trace and implement AVL tree operations Explain and prove AVL tree performance
Binary Tree Create a binary search tree using the given numbers in the order they’re presented....
Binary Tree Create a binary search tree using the given numbers in the order they’re presented. State if the resulting tree is FULL and/or BALANCED. 37, 20, 18, 56, 40, 42, 12, 5, 6, 77, 20, 54
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT