Question

In: Computer Science

PYTHON CODING Using the structural node and methods discussed in Binary Search Tree below # Binary...

PYTHON CODING

Using the structural node and methods discussed in Binary Search Tree below

# Binary Tree Node structure

class Node:

# Constructor to create a new node

def __init__(self, data):

self.data = data

self.left = None

self.right = None

class BSTree():

def __init__(self, rootdata):

self.root = Node(rootdata)

  

def insert(self, data, cur_node):

if data < cur_node.data:

if cur_node.left == None:

cur_node.left = Node(data)

else:

self.insert(data, cur_node.left)

  

elif data > cur_node.data:

if cur_node.right == None:

cur_node.right = Node(data)

else:

self.insert(data, cur_node.right)

else:

print("Duplicate value!")

create a method for the Binary Search Tree that takes an unsorted input list and constructs a Binary Search Tree based on its values. Any duplicate value will only appear once on the tree. This method outputs a Binary Search Tree structure (not an enumeration of the tree). Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or lines to clearly identify its purpose.Illustrate the performance of method enumerating the tree using level-order-traversal method on 3 examples of sizes (10, 20 and 30) and on the data below.

datalist= [199, 666, 930, 751, 120, 411, 534, 716, 134, 379, 908, 97, 740, 904, 575, 437, 983, 835, 931, 768, 405, 544, 553, 821, 160, 312, 228, 324, 675, 622, 768, 312, 310, 18, 558, 170, 842, 214, 545, 857, 6, 71, 421, 909, 908, 377, 488, 837, 884, 382, 1, 654, 207, 751, 459, 450, 431, 462, 40, 926, 304, 594, 966, 386, 760, 39, 297, 557, 125, 327, 278, 328, 937, 195, 346, 419, 953, 681, 203, 173, 807, 710, 428, 415, 601, 258, 981, 464, 568, 546, 308, 883, 431, 948, 529, 55, 651, 73, 411, 719, 172, 43, 249, 695, 636, 603, 447, 652, 211, 736, 923, 27, 198, 427, 154, 572, 671, 314, 25, 428, 900, 930, 378, 806, 281, 805, 627, 748, 23, 961, 244, 587, 352, 939, 880, 69, 52, 702, 856, 990, 19, 743, 132, 793, 279, 500, 776, 921, 583, 487, 638, 753, 209, 870, 506, 995, 691, 743, 501, 831, 549, 369, 718, 780, 17, 636, 217, 486, 548, 500, 381, 116, 84, 683, 908, 151, 633, 404, 4, 426, 92, 614, 851, 714, 90, 789, 441, 985, 539, 470, 891, 384, 962, 259, 938, 211, 683, 560, 630, 893, 106, 841, 974, 114, 239, 896, 796, 524, 896, 974, 583, 729, 577, 863, 696, 530, 670, 467, 841, 401, 209, 596, 862, 702, 21, 219, 902, 271, 293, 350, 357, 182, 179, 909, 874, 769, 192, 39, 7, 487, 571, 155, 565, 231, 36, 544, 443, 24, 596, 570, 129, 585, 529, 557, 833, 270, 241, 732, 569, 839, 762, 881, 177, 149, 413, 806, 545, 591, 721, 289, 453, 53, 470, 215, 480, 218, 787, 915, 532, 626, 18, 349, 216, 338, 572, 979, 939, 76, 55, 49, 727, 524, 68, 403, 941, 234, 85, 991, 698, 561]

Solutions

Expert Solution

Let us first consider the code which is already there in the question

THE Binary Search Tree created will be something like this -

Clearly if there are N nodes in the array and if the BST created is unbalanced i.e all the nodes are only on one side then while inserting each node in the Binary SearchTree we are going to traverse the whole BST everytime which means we will traverse all N nodes for each node N in array which will make our complexity equal to log(n*n).

That means in the Time complexity is O(n^2).

Now we will add the method which will do level order traversal and then we will discuss the enumeration

The final code will be

# Binary Tree Node structure

class Node:

# Constructor to create a new node

    def __init__(self, data):

        self.data = data

        self.left = None

        self.right = None

class BSTree():

    def __init__(self, rootdata):

        self.root = Node(rootdata)

    def insert(self, data, cur_node):

        if data < cur_node.data:

            if cur_node.left == None:

                cur_node.left = Node(data)

            else:

                self.insert(data, cur_node.left)

        elif data > cur_node.data:

            if cur_node.right == None:

                cur_node.right = Node(data)

            else:   

                self.insert(data, cur_node.right)

        else:

            print("Duplicate value!")

temp=[]

# Function to add all nodes of a given level from left to right

def printLevel(root, level):

    # base case

    if root is None:

        return False

    if level == 1:

        temp.append(root.data)

        # return true if at-least one node is present at given level

        return True

    left = printLevel(root.left, level - 1)

    right = printLevel(root.right, level - 1)

    return left or right


# Function to traverse level order traversal of given binary tree

def levelOrderTraversal(root):

    # start from level 1 -- till height of the tree

    level = 1

    # run till printLevel() returns false

    while printLevel(root, level):

        level = level + 1

    

arr = [199, 666, 930, 751, 120, 411, 534, 716, 134, 379, 908, 97, 740, 904, 575, 437, 983, 835, 931, 768, 405, 544, 553, 821, 160, 312, 228, 324, 675, 622, 768, 312, 310, 18, 558, 170, 842, 214, 545, 857, 6, 71, 421, 909, 908, 377, 488, 837, 884, 382, 1, 654, 207, 751, 459, 450, 431, 462, 40, 926, 304, 594, 966, 386, 760, 39, 297, 557, 125, 327, 278, 328, 937, 195, 346, 419, 953, 681, 203, 173, 807, 710, 428, 415, 601, 258, 981, 464, 568, 546, 308, 883, 431, 948, 529, 55, 651, 73, 411, 719, 172, 43, 249, 695, 636, 603, 447, 652, 211, 736, 923, 27, 198, 427, 154, 572, 671, 314, 25, 428, 900, 930, 378, 806, 281, 805, 627, 748, 23, 961, 244, 587, 352, 939, 880, 69, 52, 702, 856, 990, 19, 743, 132, 793, 279, 500, 776, 921, 583, 487, 638, 753, 209, 870, 506, 995, 691, 743, 501, 831, 549, 369, 718, 780, 17, 636, 217, 486, 548, 500, 381, 116, 84, 683, 908, 151, 633, 404, 4, 426, 92, 614, 851, 714, 90, 789, 441, 985, 539, 470, 891, 384, 962, 259, 938, 211, 683, 560, 630, 893, 106, 841, 974, 114, 239, 896, 796, 524, 896, 974, 583, 729, 577, 863, 696, 530, 670, 467, 841, 401, 209, 596, 862, 702, 21, 219, 902, 271, 293, 350, 357, 182, 179, 909, 874, 769, 192, 39, 7, 487, 571, 155, 565, 231, 36, 544, 443, 24, 596, 570, 129, 585, 529, 557, 833, 270, 241, 732, 569, 839, 762, 881, 177, 149, 413, 806, 545, 591, 721, 289, 453, 53, 470, 215, 480, 218, 787, 915, 532, 626, 18, 349, 216, 338, 572, 979, 939, 76, 55, 49, 727, 524, 68, 403, 941, 234, 85, 991, 698, 561]

root = BSTree(arr[0])

for i in range(1,len(arr)):

    root.insert(arr[i],root.root)

level_order_tree=[]

levelOrderTraversal(root.root)

print(temp)

Same code in picture format to understand the indentation -

The output will be -

Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
Duplicate value!
[199, 120, 666, 97, 134, 411, 930, 18, 116, 125, 160, 379, 534, 751, 983, 6, 71, 106, 132, 154, 170, 312, 405, 437, 575, 716, 908, 931, 990, 1, 17, 40, 73, 114, 129, 151, 155, 195, 228, 324, 382, 421,
488, 544, 622, 675, 740, 904, 909, 966, 985, 995, 4, 7, 39, 55, 84, 149, 173, 198, 214, 310, 314, 377, 381, 386, 419, 431, 459, 529, 539, 553, 594, 654, 671, 681, 719, 748, 835, 926, 937, 981, 991, 27, 43, 69, 76, 92, 172, 182, 207, 217, 304, 327, 378, 384, 404, 415, 428, 450, 462, 500, 530, 545, 558, 587, 601, 651, 670, 710, 718, 736, 743, 768, 842, 923, 953, 974, 25, 36, 52, 68, 90, 179, 192, 203, 211, 215, 219, 297, 308, 328, 401, 413, 427, 447, 453, 464, 506, 532, 546, 557, 568, 583, 591, 596, 603, 636, 652, 695, 714, 729, 760, 821, 837, 857, 921, 948, 961, 979, 23, 49, 53, 85, 177, 209, 216, 218, 278, 346, 403, 426, 441, 487, 501, 524, 549, 560, 572, 577, 585, 614, 627, 638, 691, 702, 721, 732, 753, 762, 807, 831, 841, 856, 884, 915, 939, 962, 19, 24, 258, 281, 338, 352, 443, 486, 548, 565, 571, 626, 633, 683, 696, 727, 806, 833, 839, 851, 883, 900, 938, 941, 21, 249, 259, 279, 293, 350, 369, 470, 561, 570, 630, 698, 805, 880, 891, 902, 244, 271, 289, 349, 357, 467, 480, 569, 793, 870, 881, 893, 239, 270, 776, 796, 863, 874, 896, 231, 241, 769, 780, 862, 234, 789, 787]

So the original array had 300 elements but in BST we have 265 elements

For in enumeration an unbalanced Tree we have number of formations possible -

T(n) = (2n)! / (n+1)!n!
Number of Labeled Tees = (Number of unlabeled trees) * n!
                       = [(2n)! / (n+1)!n!]  × n!

n=265 Therefore finally we get,

Number of Labeled Tees = (Number of unlabeled trees) * 265! = [(530)! / (267)!265!] × 265!


Related Solutions

Question - 1 Using the structural node and methods discussed in Binary Search Tree lectures, create...
Question - 1 Using the structural node and methods discussed in Binary Search Tree lectures, create a method for the Binary Search Tree that takes an unsorted input list and constructs a Binary Search Tree based on its values. Any duplicate value will only appear once on the tree. This method outputs a Binary Search Tree structure (not an enumeration of the tree). Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or lines to clearly...
PYTHON CODING Create a method for the Binary Search Tree (deleteNode) that deletes a specified node...
PYTHON CODING Create a method for the Binary Search Tree (deleteNode) that deletes a specified node identified by its value, and rearranges the descendants of the deleted node to ensure the resulting Tree meets the requirements of a Binary Search Tree. a) Discuss and justify your approach to address each possible case. b) Is the new tree (with the deleted node removed) unique? Discuss your answer. Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or...
PYTHON CODING Create a method for the Binary Search Tree (deleteNode) that deletes a specified node...
PYTHON CODING Create a method for the Binary Search Tree (deleteNode) that deletes a specified node identified by its value, and rearranges the descendants of the deleted node to ensure the resulting Tree meets the requirements of a Binary Search Tree. a) Discuss and justify your approach to address each possible case. b) Is the new tree (with the deleted node removed) unique? Discuss your answer. Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or...
PYTHON CODING Create a method (sortTraversal) for a Binary Search Tree that prints out the Binary...
PYTHON CODING Create a method (sortTraversal) for a Binary Search Tree that prints out the Binary Search Tree in ascending or deceasing order. The order type is an input to the method and can be "ascending" or "descending". The ascending input would return the node values of the tree beginning with the smallest and ending with the largest, descending returns the opposite. Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or lines to clearly identify...
PYTHON CODING Create a method for a Binary Search tree that finds the lowest common ancestor...
PYTHON CODING Create a method for a Binary Search tree that finds the lowest common ancestor of two nodes in a tree (nodesLCA). The two nodes are input by the user identified by their values. Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or lines to clearly identify its purpose.Illustrate the performance of the nodesLCA method. For the BST of datalist excute the method on following pairs: (500, 271), (21, 203) and (53 , 991)...
PYTHON CODING Create a method for a Binary Search tree that finds the lowest common ancestor...
PYTHON CODING Create a method for a Binary Search tree that finds the lowest common ancestor of two nodes in a tree (nodesLCA). The two nodes are input by the user identified by their values. Discuss method's Big-O notation. Add proper and consistent documentation to identify code sections or lines to clearly identify its purpose. Illustrate the performance of the nodesLCA method. For the BST of datalist excute the method on following pairs: (500, 271), (21, 203) and (53 ,...
Implement a function to find a node in a binary search tree. Using the following class...
Implement a function to find a node in a binary search tree. Using the following class and function definition. If a node with a matching value is found, return a pointer to it. If no match is found, return nullptr. #include <iostream> class BTNode { public: int item; BTNode *left; BTNode *right; BTNode(int i, BTNode *l=nullptr, BTNode *r=nullptr):item(i),left(l),right(r){} }; BTNode *root = nullptr; BTNode *find(int item) { //implement code here return nullptr; } int main() {    root = new...
Implement a function to remove a leaf node from a binary search tree. Using the following...
Implement a function to remove a leaf node from a binary search tree. Using the following class and function definition: class BTNode { public: int item; BTNode *left; BTNode *right; BTNode(int i, BTNode *l=nullptr, BTNode *r=nullptr):item(i),left(l),right(r){} }; BTNode *root = nullptr; BTNode * remove_leaf(int item, bool &removed) { // implement } The remove function will return the node with the item if it's present in the tree. If the node is a leaf node and is removed by the function,...
You are given a reference to the root node of a binary search tree, that implements...
You are given a reference to the root node of a binary search tree, that implements a dictionary data structure. Please print all the elements in depths 500 through 510, all in sorted order. A node in a binary search tree is at depth x, if it takes x hops to get from the root. So the root is at depth 0, the children of the root are at depth 1, and so on. The class TreeNode defines a single...
You are given a reference to the root node of a binary search tree, that implements...
You are given a reference to the root node of a binary search tree, that implements a dictionary data structure. Please print all the elements in depths 500 through 510, all in sorted order. A node in a binary search tree is at depth x, if it takes x hops to get from the root. So the root is at depth 0, the children of the root are at depth 1, and so on. The class TreeNode defines a single...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT