In: Computer Science
// C++ function to search a given key in a given BST
struct
node*
search(
struct
node* root,
int
key)
{
// Base Cases: root
is null or key is present at root
if
(root
== NULL || root->key == key)
return
root;
// Key is greater
than root's key
if
(root->key < key)
return
search(root->right, key);
// Key is smaller
than root's key
return
search(root->left, key);
}
// C++ program to demonstrate insertion
// in a BST recursively.
#include
using namespace std;
class BST
{
int data;
BST *left, *right;
public:
// Default constructor.
BST();
// Parameterized constructor.
BST(int);
// Insert function.
BST* Insert(BST *, int);
// Inorder traversal.
void Inorder(BST *);
};
// Default Constructor definition.
BST :: BST() : data(0), left(NULL), right(NULL){}
// Parameterized Constructor definition.
BST :: BST(int value)
{
data = value;
left = right = NULL;
}
// Insert function definition.
BST* BST :: Insert(BST *root, int value)
{
if(!root)
{
// Insert the first node, if root is NULL.
return new BST(value);
}
// Insert data.
if(value > root->data)
{
// Insert right node data, if the 'value'
// to be inserted is greater than 'root' node data.
// Process right nodes.
root->right = Insert(root->right, value);
}
else
{
// Insert left node data, if the 'value'
// to be inserted is greater than 'root' node data.
// Process left nodes.
root->left = Insert(root->left, value);
}
// Return 'root' node, after insertion.
return root;
}
// Inorder traversal function.
// This gives data in sorted order.
void BST :: Inorder(BST *root)
{
if(!root)
{
return;
}
Inorder(root->left);
cout << root->data << endl;
Inorder(root->right);
}
// Driver code
int main()
{
BST b, *root = NULL;
root = b.Insert(root, 50);
b.Insert(root, 30);
b.Insert(root, 20);
b.Insert(root, 40);
b.Insert(root, 70);
b.Insert(root, 60);
b.Insert(root, 80);
b.Inorder(root);
return 0;
}