In: Statistics and Probability
You intend to estimate a population mean μ from the following sample.
| 73.1 | 61.9 | 55.1 | 116.3 | 
| 55.3 | 69.2 | 91.2 | 70.3 | 
| 74 | 50.1 | 71.7 | 58.8 | 
| 117.1 | 50.6 | 43.3 | 82.6 | 
| 80.7 | 60.1 | 67.4 | 70.3 | 
| 70.2 | 66.4 | 46.7 | 115.2 | 
| 58.9 | 92.5 | 65.9 | 81.7 | 
| 59.1 | 90.6 | 56.9 | 55.8 | 
| 74.9 | 65.7 | 113 | 58.7 | 
| 87.8 | 73.7 | 89.2 | 58.3 | 
| 86.8 | 79.5 | 69.8 | 52.3 | 
| 72.9 | 81.5 | 55 | 52.7 | 
| 56.1 | 37.6 | 49.9 | 57.3 | 
| 94.5 | 58.8 | 79.5 | 85.4 | 
| 105.5 | 
Find the 99% confidence interval. Enter your answer as a tri-linear
inequality accurate to two decimal place (because the sample data
are reported accurate to one decimal place).
_______ < μ < _______
Answer should be obtained without any preliminary rounding. However, the critical value may be rounded to 3 decimal places.
We have for given data,      
   
          
Sample mean =71.4982  
Sample standard deviation =18.8184
Sample size =57  
Level of significance=   1-0.99=  
0.01  
Degree of freedom =n-1=57-1=56  
          
t critical value is (by using t table)=   2.667
          
Confidence interval formula is   
=(64.852,78.145)
      
          
          
          
Lower confidence limit=   64.852  
          
Upper confidence limit=   78.145  
64.852< μ < 78.145