In: Statistics and Probability
Assume that a sample is used to estimate a population mean μ . Find the 95% confidence interval for a sample of size 352 with a mean of 70.5 and a standard deviation of 12.6. Enter your answer as a tri-linear inequality accurate to one decimal place (because the sample statistics are reported accurate to one decimal place). < μ <
Solution :
Given that,
Point estimate = sample mean = = 70.5
sample standard deviation = s = 12.6
sample size = n = 352
Degrees of freedom = df = n - 1 = 352 - 1 = 351
At 95% confidence level
= 1 - 95%
=1 - 0.95 =0.05
/2
= 0.025
t/2,df
= t0.025,351 = 1.967
Margin of error = E = t/2,df * (s /n)
= 1.967 * (12.6 / 352)
Margin of error = E = 1.3
The 95% confidence interval estimate of the population mean is,
- E < < + E
70.5 - 1.3 < < 70.5 + 1.3
( 69.2 < < 71.8 )