Question

In: Other

Air at 25 deg Celsius ( m = 0.018 cP) enters a section of 2-inch schedule...

Air at 25 deg Celsius ( m = 0.018 cP) enters a section of 2-inch schedule 40 (ID = 2.067 in) commercial steel pipe( e = 0.0000457 m) at a gauge pressure of 310 kPa and a flow rate 1200 kg/hr) What is the pressure drop (in Kpa) in 60 meter of pipe.

PLEASE provide me a clear and complete solution. THANK YOU!

Solutions

Expert Solution


Related Solutions

A closed system contains 1kg of air initially at 100kPa, 30 deg Celsius and 0.5m3.The air...
A closed system contains 1kg of air initially at 100kPa, 30 deg Celsius and 0.5m3.The air expands reversibly and isothermally until the volume of the system doubles.For the process determine the enthropy change and the heat transfer of the air being expanded,
a .25 mm diameter wire .2 m long is to be held at 1035 deg C....
a .25 mm diameter wire .2 m long is to be held at 1035 deg C. The wires surface is black. how much electrical power is required to maintain it's temp? The surrounding air and room are both at 20 deg C. The room is also assumed to be black . Find : Raleigh number, nusselt number, HTC and power required to maintain temperature.
Air (cp = 1.0 kJ/kgK) enters an air conditioning system at 40C with a mass flow...
Air (cp = 1.0 kJ/kgK) enters an air conditioning system at 40C with a mass flow rate of 1.5 kg/s. The air is cooled by exchanging heat with a stream of R-134a refrigerant that enters the heat exchanger at -8C and 20% quality, and exits with 100% quality. If 25 kW of heat is transferred out of the air, determine: (40 pts) i) Mass flowrate of R-134a (kg/hr) ii) Exit temperature of air (C) iii) Exit pressure of R-134a (kPa)
Methane at 25°C is burned in a boiler furnace with 10.0% excess air. The air enters...
Methane at 25°C is burned in a boiler furnace with 10.0% excess air. The air enters the burner at a temperature of 100°C. Ninety percent of the methane fed is consumed; the product gas is analyzed and found to contain 10.0 mol CO2 per 1 mol of CO. The exhaust gases exit the furnace at 400°C. Calculate the rate of heat transferred from the furnace, given that a molar flow rate of 100 mol/s CH4 is fed to the furnace.
Air flows through a heating duct with a square cross-section with 5-inch sides at a speed...
Air flows through a heating duct with a square cross-section with 5-inch sides at a speed of 5.3 ft/s. Just before reaching an outlet in the floor of a room, the duct widens to assume a square cross-section with sides equal to 13 inches. Compute the speed of the air flowing into the room (in ft/s), assuming that we can treat the air as an incompressible fluid. Answer should be in Ft/s
Atmospheric air enters the heated section of a circular tube at a flow rate of .005...
Atmospheric air enters the heated section of a circular tube at a flow rate of .005 kg/s and a temperature of 20 degrees Celsius. The tube is of diameter D = 50 mm, and fully developed conditions with h = 25 W/m^2K exist over the entire length of L = 3m. a) For the case of the uniform surface heat flux at q''s = 1000 W/m2 , determine the total heat transfer rate q and the mean temperature of the...
What is [H3O+] and ph in a 0.10 M solution of HCN at 25 degrees celsius...
What is [H3O+] and ph in a 0.10 M solution of HCN at 25 degrees celsius (ka for HCN= 4.0x10-10) show steps
300% excess air having a dry bulb temperature of 25 degree celsius and relative humidity of...
300% excess air having a dry bulb temperature of 25 degree celsius and relative humidity of 60% is used to fully combust 1 kg/hr of methane in a boiler and the heat of reaction is used to generate steam. Hot water enters the boiler as a saturated liquid at 102 degree celsius and leaves as superheated at 40 bar and 400 degree celsius. The combusted gases leave the boiler at 450 degree celsius and are then cooled to 25 degree...
1222 Air enters a heating section at 100 kPa, 9oC, 45% relative humidity at rate of...
1222 Air enters a heating section at 100 kPa, 9oC, 45% relative humidity at rate of 10m3/min, and it leaves at 22oC. Determine (a) the rate of heat transfer (Q?) in the heating section and (b) the relative humidity (??) at the exit. (c) What-if Scenario: What would the relative humidity at the exit be if the relative humidity of the mixture changed to 75%?
air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm...
air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm and 25 cm at entrance and exit. if the velocity of air at the entrance is 15 m/s and leaving the diffuser at 1.5 m/s. determine a.) mass rate of air b.) density of air at the exit
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT