Question

In: Computer Science

convert -4972.67 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast...

convert -4972.67 to IEEE-754 single precision and double precision both.
Need a lot of explanation. (Atleast 1000 words)

Solutions

Expert Solution

a)
-4972.67
Converting 4972.67 to binary
   Convert decimal part first, then the fractional part
   > First convert 4972 to binary
   Divide 4972 successively by 2 until the quotient is 0
       > 4972/2 = 2486, remainder is 0
       > 2486/2 = 1243, remainder is 0
       > 1243/2 = 621, remainder is 1
       > 621/2 = 310, remainder is 1
       > 310/2 = 155, remainder is 0
       > 155/2 = 77, remainder is 1
       > 77/2 = 38, remainder is 1
       > 38/2 = 19, remainder is 0
       > 19/2 = 9, remainder is 1
       > 9/2 = 4, remainder is 1
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 1001101101100
   So, 4972 of decimal is 1001101101100 in binary
   > Now, Convert 0.67000000 to binary
       > Multiply 0.67000000 with 2.    Since 1.34000000 is >= 1. then add 1 to result
       > Multiply 0.34000000 with 2.    Since 0.68000000 is < 1. then add 0 to result
       > Multiply 0.68000000 with 2.    Since 1.36000000 is >= 1. then add 1 to result
       > Multiply 0.36000000 with 2.    Since 0.72000000 is < 1. then add 0 to result
       > Multiply 0.72000000 with 2.    Since 1.44000000 is >= 1. then add 1 to result
       > Multiply 0.44000000 with 2.    Since 0.88000000 is < 1. then add 0 to result
       > Multiply 0.88000000 with 2.    Since 1.76000000 is >= 1. then add 1 to result
       > Multiply 0.76000000 with 2.    Since 1.52000000 is >= 1. then add 1 to result
       > Multiply 0.52000000 with 2.    Since 1.04000000 is >= 1. then add 1 to result
       > Multiply 0.04000000 with 2.    Since 0.08000000 is < 1. then add 0 to result
       > Multiply 0.08000000 with 2.    Since 0.16000000 is < 1. then add 0 to result
       > Multiply 0.16000000 with 2.    Since 0.32000000 is < 1. then add 0 to result
       > Multiply 0.32000000 with 2.    Since 0.64000000 is < 1. then add 0 to result
       > Multiply 0.64000000 with 2.    Since 1.28000000 is >= 1. then add 1 to result
       > Multiply 0.28000000 with 2.    Since 0.56000000 is < 1. then add 0 to result
       > Multiply 0.56000000 with 2.    Since 1.12000000 is >= 1. then add 1 to result
       > Multiply 0.12000000 with 2.    Since 0.24000001 is < 1. then add 0 to result
       > Multiply 0.24000001 with 2.    Since 0.48000002 is < 1. then add 0 to result
       > Multiply 0.48000002 with 2.    Since 0.96000004 is < 1. then add 0 to result
       > Multiply 0.96000004 with 2.    Since 1.92000008 is >= 1. then add 1 to result
       > Multiply 0.92000008 with 2.    Since 1.84000015 is >= 1. then add 1 to result
       > Multiply 0.84000015 with 2.    Since 1.68000031 is >= 1. then add 1 to result
       > Multiply 0.68000031 with 2.    Since 1.36000061 is >= 1. then add 1 to result
       > Multiply 0.36000061 with 2.    Since 0.72000122 is < 1. then add 0 to result
       > Multiply 0.72000122 with 2.    Since 1.44000244 is >= 1. then add 1 to result
       > Multiply 0.44000244 with 2.    Since 0.88000488 is < 1. then add 0 to result
       > Multiply 0.88000488 with 2.    Since 1.76000977 is >= 1. then add 1 to result
       > Multiply 0.76000977 with 2.    Since 1.52001953 is >= 1. then add 1 to result
       > Multiply 0.52001953 with 2.    Since 1.04003906 is >= 1. then add 1 to result
       > Multiply 0.04003906 with 2.    Since 0.08007812 is < 1. then add 0 to result
       > Multiply 0.08007812 with 2.    Since 0.16015625 is < 1. then add 0 to result
       > Multiply 0.16015625 with 2.    Since 0.32031250 is < 1. then add 0 to result
       > Multiply 0.32031250 with 2.    Since 0.64062500 is < 1. then add 0 to result
       > Multiply 0.64062500 with 2.    Since 1.28125000 is >= 1. then add 1 to result
       > Multiply 0.28125000 with 2.    Since 0.56250000 is < 1. then add 0 to result
       > Multiply 0.56250000 with 2.    Since 1.12500000 is >= 1. then add 1 to result
       > Multiply 0.12500000 with 2.    Since 0.25000000 is < 1. then add 0 to result
       > Multiply 0.25000000 with 2.    Since 0.50000000 is < 1. then add 0 to result
       > Multiply 0.50000000 with 2.    Since 1.00000000 is >= 1. then add 1 to result
       > This is equal to 1, so, stop calculating
   0.6700000000000728 of decimal is .101010111000010100011110101110000101001 in binary
   so, 4972.67 in binary is 1001101101100.101010111000010100011110101110000101001
-4972.67 in simple binary => 1001101101100.101010111000010100011110101110000101001
so, -4972.67 in normal binary is 1001101101100.101010111000010100011110101110000101001 => 1.001101101100101010111 * 2^12

single precision:
--------------------
sign bit is 1(-ve)
exponent bits are (127+12=139) => 10001011
   Divide 139 successively by 2 until the quotient is 0
       > 139/2 = 69, remainder is 1
       > 69/2 = 34, remainder is 1
       > 34/2 = 17, remainder is 0
       > 17/2 = 8, remainder is 1
       > 8/2 = 4, remainder is 0
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10001011
   So, 139 of decimal is 10001011 in binary
frac/significant bits are 00110110110010101011100

so, -4972.67 in single-precision format is 1 10001011 00110110110010101011100
Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111
Use this table to convert from binary to hexadecimal
Converting 11000101100110110110010101011100 to hexadecimal
1100 => C
0101 => 5
1001 => 9
1011 => B
0110 => 6
0101 => 5
0101 => 5
1100 => C
So, in hexadecimal 11000101100110110110010101011100 is 0xC59B655C

in hexadecimal it is 0xC59B655C

b)
-4972.67
Converting 4972.67 to binary
   Convert decimal part first, then the fractional part
   > First convert 4972 to binary
   Divide 4972 successively by 2 until the quotient is 0
       > 4972/2 = 2486, remainder is 0
       > 2486/2 = 1243, remainder is 0
       > 1243/2 = 621, remainder is 1
       > 621/2 = 310, remainder is 1
       > 310/2 = 155, remainder is 0
       > 155/2 = 77, remainder is 1
       > 77/2 = 38, remainder is 1
       > 38/2 = 19, remainder is 0
       > 19/2 = 9, remainder is 1
       > 9/2 = 4, remainder is 1
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 1001101101100
   So, 4972 of decimal is 1001101101100 in binary
   > Now, Convert 0.67000000 to binary
       > Multiply 0.67000000 with 2.    Since 1.34000000 is >= 1. then add 1 to result
       > Multiply 0.34000000 with 2.    Since 0.68000000 is < 1. then add 0 to result
       > Multiply 0.68000000 with 2.    Since 1.36000000 is >= 1. then add 1 to result
       > Multiply 0.36000000 with 2.    Since 0.72000000 is < 1. then add 0 to result
       > Multiply 0.72000000 with 2.    Since 1.44000000 is >= 1. then add 1 to result
       > Multiply 0.44000000 with 2.    Since 0.88000000 is < 1. then add 0 to result
       > Multiply 0.88000000 with 2.    Since 1.76000000 is >= 1. then add 1 to result
       > Multiply 0.76000000 with 2.    Since 1.52000000 is >= 1. then add 1 to result
       > Multiply 0.52000000 with 2.    Since 1.04000000 is >= 1. then add 1 to result
       > Multiply 0.04000000 with 2.    Since 0.08000000 is < 1. then add 0 to result
       > Multiply 0.08000000 with 2.    Since 0.16000000 is < 1. then add 0 to result
       > Multiply 0.16000000 with 2.    Since 0.32000000 is < 1. then add 0 to result
       > Multiply 0.32000000 with 2.    Since 0.64000000 is < 1. then add 0 to result
       > Multiply 0.64000000 with 2.    Since 1.28000000 is >= 1. then add 1 to result
       > Multiply 0.28000000 with 2.    Since 0.56000000 is < 1. then add 0 to result
       > Multiply 0.56000000 with 2.    Since 1.12000000 is >= 1. then add 1 to result
       > Multiply 0.12000000 with 2.    Since 0.24000001 is < 1. then add 0 to result
       > Multiply 0.24000001 with 2.    Since 0.48000002 is < 1. then add 0 to result
       > Multiply 0.48000002 with 2.    Since 0.96000004 is < 1. then add 0 to result
       > Multiply 0.96000004 with 2.    Since 1.92000008 is >= 1. then add 1 to result
       > Multiply 0.92000008 with 2.    Since 1.84000015 is >= 1. then add 1 to result
       > Multiply 0.84000015 with 2.    Since 1.68000031 is >= 1. then add 1 to result
       > Multiply 0.68000031 with 2.    Since 1.36000061 is >= 1. then add 1 to result
       > Multiply 0.36000061 with 2.    Since 0.72000122 is < 1. then add 0 to result
       > Multiply 0.72000122 with 2.    Since 1.44000244 is >= 1. then add 1 to result
       > Multiply 0.44000244 with 2.    Since 0.88000488 is < 1. then add 0 to result
       > Multiply 0.88000488 with 2.    Since 1.76000977 is >= 1. then add 1 to result
       > Multiply 0.76000977 with 2.    Since 1.52001953 is >= 1. then add 1 to result
       > Multiply 0.52001953 with 2.    Since 1.04003906 is >= 1. then add 1 to result
       > Multiply 0.04003906 with 2.    Since 0.08007812 is < 1. then add 0 to result
       > Multiply 0.08007812 with 2.    Since 0.16015625 is < 1. then add 0 to result
       > Multiply 0.16015625 with 2.    Since 0.32031250 is < 1. then add 0 to result
       > Multiply 0.32031250 with 2.    Since 0.64062500 is < 1. then add 0 to result
       > Multiply 0.64062500 with 2.    Since 1.28125000 is >= 1. then add 1 to result
       > Multiply 0.28125000 with 2.    Since 0.56250000 is < 1. then add 0 to result
       > Multiply 0.56250000 with 2.    Since 1.12500000 is >= 1. then add 1 to result
       > Multiply 0.12500000 with 2.    Since 0.25000000 is < 1. then add 0 to result
       > Multiply 0.25000000 with 2.    Since 0.50000000 is < 1. then add 0 to result
       > Multiply 0.50000000 with 2.    Since 1.00000000 is >= 1. then add 1 to result
       > This is equal to 1, so, stop calculating
   0.6700000000000728 of decimal is .101010111000010100011110101110000101001 in binary
   so, 4972.67 in binary is 1001101101100.101010111000010100011110101110000101001
-4972.67 in simple binary => 1001101101100.101010111000010100011110101110000101001
so, -4972.67 in normal binary is 1001101101100.101010111000010100011110101110000101001 => 1.001101101100101010111000010100011110101110000101001 * 2^12

64-bit format:
--------------------
sign bit is 1(-ve)
exponent bits are (1023+12=1035) => 10000001011
   Divide 1035 successively by 2 until the quotient is 0
       > 1035/2 = 517, remainder is 1
       > 517/2 = 258, remainder is 1
       > 258/2 = 129, remainder is 0
       > 129/2 = 64, remainder is 1
       > 64/2 = 32, remainder is 0
       > 32/2 = 16, remainder is 0
       > 16/2 = 8, remainder is 0
       > 8/2 = 4, remainder is 0
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10000001011
   So, 1035 of decimal is 10000001011 in binary
frac/significant bits are 0011011011001010101110000101000111101011100001010010

so, -4972.67 in 64-bit format is 1 10000001011 0011011011001010101110000101000111101011100001010010
Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111
Use this table to convert from binary to hexadecimal
Converting 1100000010110011011011001010101110000101000111101011100001010010 to hexadecimal
1100 => C
0000 => 0
1011 => B
0011 => 3
0110 => 6
1100 => C
1010 => A
1011 => B
1000 => 8
0101 => 5
0001 => 1
1110 => E
1011 => B
1000 => 8
0101 => 5
0010 => 2
So, in hexadecimal 1100000010110011011011001010101110000101000111101011100001010010 is 0xC0B36CAB851EB852

in hexadecimal it is 0xC0B36CAB851EB852



Related Solutions

convert -549.675 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast...
convert -549.675 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast 1000 words)
convert -47.199 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast...
convert -47.199 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast 1000 words)
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List...
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List all the steps required to get the single and double precision.
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and...
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation. 2. (4 points) Convert -7.875 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation.
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for...
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for upvote. Please do not answer otherwise.
4. Explain how the following computations are performed using both IEEE single precision and double precision...
4. Explain how the following computations are performed using both IEEE single precision and double precision floating point representation. a. 11716 +2A916 b. 1011.112-11.1510 c. 1.0010102 x 0.011012 d. Comment on any differences you see in accuracy and precision.
Represent (10.375)10 as single precision IEEE 754, show all the steps
Represent (10.375)10 as single precision IEEE 754, show all the steps
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT