Question

In: Computer Science

convert -549.675 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast...

convert -549.675 to IEEE-754 single precision and double precision both.
Need a lot of explanation. (Atleast 1000 words)

Solutions

Expert Solution

1)
-549.675
Converting 549.675 to binary
   Convert decimal part first, then the fractional part
   > First convert 549 to binary
   Divide 549 successively by 2 until the quotient is 0
       > 549/2 = 274, remainder is 1
       > 274/2 = 137, remainder is 0
       > 137/2 = 68, remainder is 1
       > 68/2 = 34, remainder is 0
       > 34/2 = 17, remainder is 0
       > 17/2 = 8, remainder is 1
       > 8/2 = 4, remainder is 0
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 1000100101
   So, 549 of decimal is 1000100101 in binary
   > Now, Convert 0.67500000 to binary
       > Multiply 0.67500000 with 2.    Since 1.35000000 is >= 1. then add 1 to result
       > Multiply 0.35000000 with 2.    Since 0.70000000 is < 1. then add 0 to result
       > Multiply 0.70000000 with 2.    Since 1.40000000 is >= 1. then add 1 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.60000000 is >= 1. then add 1 to result
       > Multiply 0.60000000 with 2.    Since 1.20000000 is >= 1. then add 1 to result
       > Multiply 0.20000000 with 2.    Since 0.40000000 is < 1. then add 0 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.60000000 is >= 1. then add 1 to result
       > Multiply 0.60000000 with 2.    Since 1.20000000 is >= 1. then add 1 to result
       > Multiply 0.20000000 with 2.    Since 0.40000000 is < 1. then add 0 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.60000000 is >= 1. then add 1 to result
       > Multiply 0.60000000 with 2.    Since 1.20000000 is >= 1. then add 1 to result
       > Multiply 0.20000000 with 2.    Since 0.40000000 is < 1. then add 0 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.59999999 is >= 1. then add 1 to result
       > Multiply 0.59999999 with 2.    Since 1.19999999 is >= 1. then add 1 to result
       > Multiply 0.19999999 with 2.    Since 0.39999998 is < 1. then add 0 to result
       > Multiply 0.39999998 with 2.    Since 0.79999995 is < 1. then add 0 to result
       > Multiply 0.79999995 with 2.    Since 1.59999990 is >= 1. then add 1 to result
       > Multiply 0.59999990 with 2.    Since 1.19999981 is >= 1. then add 1 to result
       > Multiply 0.19999981 with 2.    Since 0.39999962 is < 1. then add 0 to result
       > Multiply 0.39999962 with 2.    Since 0.79999924 is < 1. then add 0 to result
       > Multiply 0.79999924 with 2.    Since 1.59999847 is >= 1. then add 1 to result
       > Multiply 0.59999847 with 2.    Since 1.19999695 is >= 1. then add 1 to result
       > Multiply 0.19999695 with 2.    Since 0.39999390 is < 1. then add 0 to result
       > Multiply 0.39999390 with 2.    Since 0.79998779 is < 1. then add 0 to result
       > Multiply 0.79998779 with 2.    Since 1.59997559 is >= 1. then add 1 to result
       > Multiply 0.59997559 with 2.    Since 1.19995117 is >= 1. then add 1 to result
       > Multiply 0.19995117 with 2.    Since 0.39990234 is < 1. then add 0 to result
       > Multiply 0.39990234 with 2.    Since 0.79980469 is < 1. then add 0 to result
       > Multiply 0.79980469 with 2.    Since 1.59960938 is >= 1. then add 1 to result
       > Multiply 0.59960938 with 2.    Since 1.19921875 is >= 1. then add 1 to result
       > Multiply 0.19921875 with 2.    Since 0.39843750 is < 1. then add 0 to result
       > Multiply 0.39843750 with 2.    Since 0.79687500 is < 1. then add 0 to result
       > Multiply 0.79687500 with 2.    Since 1.59375000 is >= 1. then add 1 to result
       > Multiply 0.59375000 with 2.    Since 1.18750000 is >= 1. then add 1 to result
       > Multiply 0.18750000 with 2.    Since 0.37500000 is < 1. then add 0 to result
       > Multiply 0.37500000 with 2.    Since 0.75000000 is < 1. then add 0 to result
       > Multiply 0.75000000 with 2.    Since 1.50000000 is >= 1. then add 1 to result
       > Multiply 0.50000000 with 2.    Since 1.00000000 is >= 1. then add 1 to result
       > This is equal to 1, so, stop calculating
   0.6749999999999545 of decimal is .101011001100110011001100110011001100110011 in binary
   so, 549.675 in binary is 1000100101.101011001100110011001100110011001100110011
-549.675 in simple binary => 1000100101.101011001100110011001100110011001100110011
so, -549.675 in normal binary is 1000100101.101011001100110011001100110011001100110011 => 1.00010010110101100110011 * 2^9

single precision:
--------------------
sign bit is 1(-ve)
exponent bits are (127+9=136) => 10001000
   Divide 136 successively by 2 until the quotient is 0
       > 136/2 = 68, remainder is 0
       > 68/2 = 34, remainder is 0
       > 34/2 = 17, remainder is 0
       > 17/2 = 8, remainder is 1
       > 8/2 = 4, remainder is 0
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10001000
   So, 136 of decimal is 10001000 in binary
frac/significant bits are 00010010110101100110011

so, -549.675 in single-precision format is 1 10001000 00010010110101100110011
Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111
Use this table to convert from binary to hexadecimal
Converting 11000100000010010110101100110011 to hexadecimal
1100 => C
0100 => 4
0000 => 0
1001 => 9
0110 => 6
1011 => B
0011 => 3
0011 => 3
So, in hexadecimal 11000100000010010110101100110011 is 0xC4096B33

in hexadecimal it is 0xC4096B33

2)
-549.675
Converting 549.675 to binary
   Convert decimal part first, then the fractional part
   > First convert 549 to binary
   Divide 549 successively by 2 until the quotient is 0
       > 549/2 = 274, remainder is 1
       > 274/2 = 137, remainder is 0
       > 137/2 = 68, remainder is 1
       > 68/2 = 34, remainder is 0
       > 34/2 = 17, remainder is 0
       > 17/2 = 8, remainder is 1
       > 8/2 = 4, remainder is 0
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 1000100101
   So, 549 of decimal is 1000100101 in binary
   > Now, Convert 0.67500000 to binary
       > Multiply 0.67500000 with 2.    Since 1.35000000 is >= 1. then add 1 to result
       > Multiply 0.35000000 with 2.    Since 0.70000000 is < 1. then add 0 to result
       > Multiply 0.70000000 with 2.    Since 1.40000000 is >= 1. then add 1 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.60000000 is >= 1. then add 1 to result
       > Multiply 0.60000000 with 2.    Since 1.20000000 is >= 1. then add 1 to result
       > Multiply 0.20000000 with 2.    Since 0.40000000 is < 1. then add 0 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.60000000 is >= 1. then add 1 to result
       > Multiply 0.60000000 with 2.    Since 1.20000000 is >= 1. then add 1 to result
       > Multiply 0.20000000 with 2.    Since 0.40000000 is < 1. then add 0 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.60000000 is >= 1. then add 1 to result
       > Multiply 0.60000000 with 2.    Since 1.20000000 is >= 1. then add 1 to result
       > Multiply 0.20000000 with 2.    Since 0.40000000 is < 1. then add 0 to result
       > Multiply 0.40000000 with 2.    Since 0.80000000 is < 1. then add 0 to result
       > Multiply 0.80000000 with 2.    Since 1.59999999 is >= 1. then add 1 to result
       > Multiply 0.59999999 with 2.    Since 1.19999999 is >= 1. then add 1 to result
       > Multiply 0.19999999 with 2.    Since 0.39999998 is < 1. then add 0 to result
       > Multiply 0.39999998 with 2.    Since 0.79999995 is < 1. then add 0 to result
       > Multiply 0.79999995 with 2.    Since 1.59999990 is >= 1. then add 1 to result
       > Multiply 0.59999990 with 2.    Since 1.19999981 is >= 1. then add 1 to result
       > Multiply 0.19999981 with 2.    Since 0.39999962 is < 1. then add 0 to result
       > Multiply 0.39999962 with 2.    Since 0.79999924 is < 1. then add 0 to result
       > Multiply 0.79999924 with 2.    Since 1.59999847 is >= 1. then add 1 to result
       > Multiply 0.59999847 with 2.    Since 1.19999695 is >= 1. then add 1 to result
       > Multiply 0.19999695 with 2.    Since 0.39999390 is < 1. then add 0 to result
       > Multiply 0.39999390 with 2.    Since 0.79998779 is < 1. then add 0 to result
       > Multiply 0.79998779 with 2.    Since 1.59997559 is >= 1. then add 1 to result
       > Multiply 0.59997559 with 2.    Since 1.19995117 is >= 1. then add 1 to result
       > Multiply 0.19995117 with 2.    Since 0.39990234 is < 1. then add 0 to result
       > Multiply 0.39990234 with 2.    Since 0.79980469 is < 1. then add 0 to result
       > Multiply 0.79980469 with 2.    Since 1.59960938 is >= 1. then add 1 to result
       > Multiply 0.59960938 with 2.    Since 1.19921875 is >= 1. then add 1 to result
       > Multiply 0.19921875 with 2.    Since 0.39843750 is < 1. then add 0 to result
       > Multiply 0.39843750 with 2.    Since 0.79687500 is < 1. then add 0 to result
       > Multiply 0.79687500 with 2.    Since 1.59375000 is >= 1. then add 1 to result
       > Multiply 0.59375000 with 2.    Since 1.18750000 is >= 1. then add 1 to result
       > Multiply 0.18750000 with 2.    Since 0.37500000 is < 1. then add 0 to result
       > Multiply 0.37500000 with 2.    Since 0.75000000 is < 1. then add 0 to result
       > Multiply 0.75000000 with 2.    Since 1.50000000 is >= 1. then add 1 to result
       > Multiply 0.50000000 with 2.    Since 1.00000000 is >= 1. then add 1 to result
       > This is equal to 1, so, stop calculating
   0.6749999999999545 of decimal is .101011001100110011001100110011001100110011 in binary
   so, 549.675 in binary is 1000100101.101011001100110011001100110011001100110011
-549.675 in simple binary => 1000100101.101011001100110011001100110011001100110011
so, -549.675 in normal binary is 1000100101.101011001100110011001100110011001100110011 => 1.000100101101011001100110011001100110011001100110011 * 2^9

64-bit format:
--------------------
sign bit is 1(-ve)
exponent bits are (1023+9=1032) => 10000001000
   Divide 1032 successively by 2 until the quotient is 0
       > 1032/2 = 516, remainder is 0
       > 516/2 = 258, remainder is 0
       > 258/2 = 129, remainder is 0
       > 129/2 = 64, remainder is 1
       > 64/2 = 32, remainder is 0
       > 32/2 = 16, remainder is 0
       > 16/2 = 8, remainder is 0
       > 8/2 = 4, remainder is 0
       > 4/2 = 2, remainder is 0
       > 2/2 = 1, remainder is 0
       > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10000001000
   So, 1032 of decimal is 10000001000 in binary
frac/significant bits are 0001001011010110011001100110011001100110011001100110

so, -549.675 in 64-bit format is 1 10000001000 0001001011010110011001100110011001100110011001100110
Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111
Use this table to convert from binary to hexadecimal
Converting 1100000010000001001011010110011001100110011001100110011001100110 to hexadecimal
1100 => C
0000 => 0
1000 => 8
0001 => 1
0010 => 2
1101 => D
0110 => 6
0110 => 6
0110 => 6
0110 => 6
0110 => 6
0110 => 6
0110 => 6
0110 => 6
0110 => 6
0110 => 6
So, in hexadecimal 1100000010000001001011010110011001100110011001100110011001100110 is 0xC0812D6666666666

in hexadecimal it is 0xC0812D6666666666



Related Solutions

convert -47.199 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast...
convert -47.199 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast 1000 words)
convert -4972.67 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast...
convert -4972.67 to IEEE-754 single precision and double precision both. Need a lot of explanation. (Atleast 1000 words)
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction. Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List...
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List all the steps required to get the single and double precision.
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and...
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation. 2. (4 points) Convert -7.875 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation.
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for...
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for upvote. Please do not answer otherwise.
4. Explain how the following computations are performed using both IEEE single precision and double precision...
4. Explain how the following computations are performed using both IEEE single precision and double precision floating point representation. a. 11716 +2A916 b. 1011.112-11.1510 c. 1.0010102 x 0.011012 d. Comment on any differences you see in accuracy and precision.
Represent (10.375)10 as single precision IEEE 754, show all the steps
Represent (10.375)10 as single precision IEEE 754, show all the steps
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT