Question

In: Physics

A block of mass M sits at rest at the top of a frictionless curved ramp...

A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L.

a) In terms of the other given variables, determine an expression for the height h.

b) Determine the speed and direction of the first block after the collision. Determine the maximum angle from the vertical to which the pendulum will rise after the collision.

c) Determine whether the collision was elastic or inelastic. Justify your answer!

d) If the small block had not hit the larger block, it would have slid onto a flat surface, moving a distance D before coming to rest. Determine the coefficient of kinetic friction between the small block and the flat surface.

Solutions

Expert Solution


Related Solutions

A block of mass m begins at rest at the top of a ramp at elevation...
A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp. How much of its original total energy (in J) survives as KE when it reaches the ground? (In other words, the acceleration is not zero like it was in lab and friction does not remove 100% of...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.2 m and then collides with stationary block 2, which has mass m2 = 4m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.55 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 3.3 m and then collides with stationary block 2, which has mass m2 = 5m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?
A small box is released from rest at the top of a frictionless ramp that is...
A small box is released from rest at the top of a frictionless ramp that is inclined at 36.9 0 above the horizontal. How long does it take the box to travel 8.00 m to the bottom of the incline?
a block of mass 2.4 kg is sitting on a frictionless ramp with a spring at...
a block of mass 2.4 kg is sitting on a frictionless ramp with a spring at the bottom that has a spring constant of 490N/m the angle of the ramp with respect to the horizontal is 31 degrees A.) the block starting from rest slides down the ramp a distance 78 cm before hitting the spring how far in cm is the spring compressed as the block comes to momentary rest? B.) After the block comes to rest the spring...
In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from...
In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from height h and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction is μk and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Express your answer in...
A block is placed on a frictionless ramp at a height of 13.5 m above the...
A block is placed on a frictionless ramp at a height of 13.5 m above the ground. Starting from rest, the block slides down the ramp. At the bottom of the ramp, the block slides onto a frictionless horizontal track without slowing down. At the end of the horizontal track, the block slides smoothly onto a second frictionless ramp. How far along the second ramp does the block travel before coming to a momentary stop, as measured along the incline...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
A 10kg block is resting in the middle of the ramp frictionless ramp. The ramp has...
A 10kg block is resting in the middle of the ramp frictionless ramp. The ramp has an angle of inclination of 37 degrees with respect to the horizontal surface, and a length of 10 meters. The coefficient of static friction between the block and the ramp is .37, the coefficient of kinetic friction is .25. A string is tied from the block and moved up the ramp, over a frictionless pulley and tied to a 15kg block hanging freely 2m...
A block with mass 0.460 kg sits at rest on a light but not long vertical...
A block with mass 0.460 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on the floor. a)How much elastic potential energy is stored in the spring when the block is sitting at rest on it? b) A second identical block is dropped onto the first from a height of 4.10 mm above the first block and sticks to it. What is the maximum elastic potential energy stored...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT