Question

In: Math

Assume that​ women's heights are normally distributed with a mean given by μ=63.5 in​, and a...

Assume that​ women's heights are normally distributed with a mean given by μ=63.5 in​, and a standard deviation given by σ=2.1 in.

​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 64 in.

​(b) If 44 women are randomly​ selected, find the probability that they have a mean height less than 64

Solutions

Expert Solution

Solution :

Given that ,

mean = = 63.5

standard deviation = =2.1

P(x < 64) = P(( x -) / (64-63.5) / 2.1)

= P(z < 0.24)

Using z table

= 0.5948

b.

n = 44

= 63.5

=  / n = 2.1/ 44=0.32

P( <64 ) = P[( - ) / < (64-63.5) /0.32 ]

= P(z < 1.56)

=0.9406


Related Solutions

Assume that​ women's heights are normally distributed with a mean given by ​, 62.6 and a...
Assume that​ women's heights are normally distributed with a mean given by ​, 62.6 and a standard deviation given by 2.8 . ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 63 in. ​(b) If 49 women are randomly​ selected, find the probability that they have a mean height less than 63 in.
A survey found that​ women's heights are normally distributed with mean 63.5 in and standard deviation...
A survey found that​ women's heights are normally distributed with mean 63.5 in and standard deviation 2.5 in. A branch of the military requires​ women's heights to be between 58 in and 80 in. a. Find the percentage of women meeting the height requirement. Are many women being denied the opportunity to join this branch of the military because they are too short or too​ tall? b. If this branch of the military changes the height requirements so that all...
A survey found that​ women's heights are normally distributed with mean 63.5 in. and standard deviation...
A survey found that​ women's heights are normally distributed with mean 63.5 in. and standard deviation 3.1 in. The survey also found that​ men's heights are normally distributed with mean 68.5 in. and standard deviation 3.4 in. Most of the live characters employed at an amusement park have height requirements of a minimum of 55 in. and a maximum of 64 in. Complete parts​ (a) and​ (b) below. A) The percentage of men who meet the height requirements is? B)...
Assume that​ women's heights are normally distributed with a mean given by mu=64.4 in ​, and...
Assume that​ women's heights are normally distributed with a mean given by mu=64.4 in ​, and a standard deviation given by sigma=1.8 in . Complete parts a and b. a. If 1 woman is randomly​ selected, find the probability that her height is between 64.2 in and 65.2 in. The probability is approximately ? . ​(Round to four decimal places as​ needed.) b. If 14 women are randomly​ selected, find the probability that they have a mean height between 64.2...
Assume that women's heights are normally distributed with a mean given by u=63.6in and a standard...
Assume that women's heights are normally distributed with a mean given by u=63.6in and a standard deviation given by = 2.7in. a) if 1 woman is randomly selected, find the probability that her height is less than 64in. b) If 50 women are randomly selected, find the probability that they have a mean height less than 64in.
Assume that? women's heights are normally distributed with a mean given by mu equals 64.6 in?,...
Assume that? women's heights are normally distributed with a mean given by mu equals 64.6 in?, and a standard deviation given by sigma equals 1.9 in. ?(a) If 1 woman is randomly? selected, find the probability that her height is less than 65 in. ?(b) If 50 women are randomly? selected, find the probability that they have a mean height less than 65 in. ?(?a) The probability is approximately nothing. ?(Round to four decimal places as? needed.) ?(b) The probability...
Assume that​ women's heights are normally distributed with a mean given by mu equals 63.4 in​,...
Assume that​ women's heights are normally distributed with a mean given by mu equals 63.4 in​, and a standard deviation given by sigma equals 1.9 in. ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 64 in. ​(b) If 31 women are randomly​ selected, find the probability that they have a mean height less than 64 in.
Assume that​ women's heights are normally distributed with a mean given by mu equals 64.4 in...
Assume that​ women's heights are normally distributed with a mean given by mu equals 64.4 in and a standard deviation given by sigma equals 2.9 in (a) If 1 woman is randomly​ selected, find the probability that her height is less than 65 in. ​(b) If 45 women are randomly​ selected, find the probability that they have a mean height less than 65
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.1 in​,...
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.1 in​, and a standard deviation given by sigma equals 2.7 in. ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 63 in. ​(b) If 32 women are randomly​ selected, find the probability that they have a mean height less than 63 in.
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.2 in​,...
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.2 in​, and a standard deviation given by sigma equals 1.9 in. Complete parts a and b. a. If 1 woman is randomly​ selected, find the probability that her height is between 61.9 in and 62.9 in. The probability is approximately nothing. ​(Round to four decimal places as​ needed.) b. If 14 women are randomly​ selected, find the probability that they have a mean height between...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT