Question

In: Statistics and Probability

Assume that women's heights are normally distributed with a mean given by u=63.6in and a standard...

Assume that women's heights are normally distributed with a mean given by u=63.6in and a standard deviation given by = 2.7in.

a) if 1 woman is randomly selected, find the probability that her height is less than 64in.

b) If 50 women are randomly selected, find the probability that they have a mean height less than 64in.

Solutions

Expert Solution

Part a):First we need to find the z-score.

z-score formula:

                         =

In excel :

P(x<64) = 0.558887

Part b): Now we find the probability that they have a mean height less than 64in but the 50 women is selected.

sample size =50 (which is the large sample size )

So we can use the central limit theorem.

Central limit stated that the sample size is large that is greater than 30 then use central limit theorem with mean mu and standard deviation sigma/square root of n.


Related Solutions

Assume that​ women's heights are normally distributed with a mean given by ​, 62.6 and a...
Assume that​ women's heights are normally distributed with a mean given by ​, 62.6 and a standard deviation given by 2.8 . ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 63 in. ​(b) If 49 women are randomly​ selected, find the probability that they have a mean height less than 63 in.
assume that women's heights are normally distributed with a mean 64.6 in. and a standard deviation...
assume that women's heights are normally distributed with a mean 64.6 in. and a standard deviation 2.6 in. if 49 women are randomly selected, find the probability they have a mean less than 65 in
Assume that​ women's heights are normally distributed with a mean given by mu=64.4 in ​, and...
Assume that​ women's heights are normally distributed with a mean given by mu=64.4 in ​, and a standard deviation given by sigma=1.8 in . Complete parts a and b. a. If 1 woman is randomly​ selected, find the probability that her height is between 64.2 in and 65.2 in. The probability is approximately ? . ​(Round to four decimal places as​ needed.) b. If 14 women are randomly​ selected, find the probability that they have a mean height between 64.2...
Assume that​ women's heights are normally distributed with a mean given by μ=63.5 in​, and a...
Assume that​ women's heights are normally distributed with a mean given by μ=63.5 in​, and a standard deviation given by σ=2.1 in. ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 64 in. ​(b) If 44 women are randomly​ selected, find the probability that they have a mean height less than 64
Assume that? women's heights are normally distributed with a mean given by mu equals 64.6 in?,...
Assume that? women's heights are normally distributed with a mean given by mu equals 64.6 in?, and a standard deviation given by sigma equals 1.9 in. ?(a) If 1 woman is randomly? selected, find the probability that her height is less than 65 in. ?(b) If 50 women are randomly? selected, find the probability that they have a mean height less than 65 in. ?(?a) The probability is approximately nothing. ?(Round to four decimal places as? needed.) ?(b) The probability...
Assume that​ women's heights are normally distributed with a mean given by mu equals 63.4 in​,...
Assume that​ women's heights are normally distributed with a mean given by mu equals 63.4 in​, and a standard deviation given by sigma equals 1.9 in. ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 64 in. ​(b) If 31 women are randomly​ selected, find the probability that they have a mean height less than 64 in.
Assume that​ women's heights are normally distributed with a mean given by mu equals 64.4 in...
Assume that​ women's heights are normally distributed with a mean given by mu equals 64.4 in and a standard deviation given by sigma equals 2.9 in (a) If 1 woman is randomly​ selected, find the probability that her height is less than 65 in. ​(b) If 45 women are randomly​ selected, find the probability that they have a mean height less than 65
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.1 in​,...
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.1 in​, and a standard deviation given by sigma equals 2.7 in. ​(a) If 1 woman is randomly​ selected, find the probability that her height is less than 63 in. ​(b) If 32 women are randomly​ selected, find the probability that they have a mean height less than 63 in.
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.2 in​,...
Assume that​ women's heights are normally distributed with a mean given by mu equals 62.2 in​, and a standard deviation given by sigma equals 1.9 in. Complete parts a and b. a. If 1 woman is randomly​ selected, find the probability that her height is between 61.9 in and 62.9 in. The probability is approximately nothing. ​(Round to four decimal places as​ needed.) b. If 14 women are randomly​ selected, find the probability that they have a mean height between...
A survey found that​ women's heights are normally distributed with mean 62.2 in. and a standard...
A survey found that​ women's heights are normally distributed with mean 62.2 in. and a standard deviation of 3.4 in. The survey also found that​ men's heights are normally distributed with mean 68.6 in68.6 in. and a standard deviation of 3.4 in. Consider an executive jet that seats six with a doorway height of 56.3 in. Complete parts​ (a) through​ (c) below. a) What percentage of adult men can fit through the door without​ bending? b) Does the door design...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT