In: Physics
discuss the history of heron's fountain in 100-200 words
Heron's fountain is a hydraulic machine invented by the 1st century AD inventor, mathematician, and physicist Heron of Alexandria.
Heron studied the pressure of air and steam, described the first steam engine, and built toys that would spurt water, one of them known as Heron's fountain. Various versions of Heron's fountain are used today in physicsclasses as a demonstration of principles of hydraulics and pneumatics.
• An example of Heron's fountain, built by Larry Fleinhardt, was featured in the 8th episode (titled "Tabu") of the 4th season of the television show Numb3rs.
Heron's Fountain was featured in the first episode of "How Britain Worked" hosted by Guy Martin.
•
Heron's fountain is not a perpetual motionmachine.[1] If the nozzle of the spout is narrow, it may play for several minutes, but it eventually comes to a stop. The water coming out of the tube may go higher than the level in any container, but the net flow of water is downward. If, however, the volumes of the air supply and fountain supply containers are designed to be much larger than the volume of the basin, with the flow rate of water from the nozzle of the spout being held constant, the fountain could operate for a far greater time interval.
Its action may seem less paradoxical if considered as a siphon, but with the upper arch of the tube removed, and the air pressure between the two lower containers providing the positive pressure to lift the water over the arch. The device is also known as Heron's siphon.
The gravitational potential energy of the water which falls a long way from the basin into the lower container is transferred by pneumatic pressure tube (only air is moved upwards at this stage) to push the water from the upper container a short way above the basin.
The fountain can spout (almost) as high above the upper container as the water falls from the basin into the lower container. For maximum effect, place the upper container as closely beneath the basin as possible and place the lower container a long way beneath both.
As soon as the water level in the upper container has dropped so low that the water bearing tube no longer touches the water surface, the fountain stops. In order to make the fountain play again, the air supply container is emptied of water, and the fountain supply container and the basin are refilled. Lifting the water provides the energyrequired.