Question

In: Math

Part 1 A company produces steel rods. The lengths of the steel rods are normally distributed...

Part 1

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 198.9-cm and a standard deviation of 2.3-cm. For shipment, 22 steel rods are bundled together.

Find P52, which is the average length separating the smallest 52% bundles from the largest 48% bundles.
P52 = _____ cm

Part 2

Scores for a common standardized college aptitude test are normally distributed with a mean of 513 and a standard deviation of 96. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect.

If 1 of the men is randomly selected, find the probability that his score is at least 616.
P(X > 616) = __________

If 5 of the men are randomly selected, find the probability that their mean score is at least 616.
P(M > 616) = __________

Part 3

A population of values has a normal distribution with μ=152.8 and σ=59.7. You intend to draw a random sample of size n=211.

Find the probability that a single randomly selected value is between 140.9 and 164.3.
P(140.9 < X < 164.3) = __________

Find the probability that a sample of size n=211 is randomly selected with a mean between 140.9 and 164.3.
P(140.9 < M < 164.3) = _____________

Part 4

A population of values has a normal distribution with μ=164.8 and σ=37.2. You intend to draw a random sample of size n=108.

Find the probability that a sample of size n=108 is randomly selected with a mean between 154.1 and 169.8.
P(154.1 < M < 169.8) = _________

Part 5

A population of values has a normal distribution with μ=143.9 and σ=89.6. You intend to draw a random sample of size n=217.

Find the probability that a single randomly selected value is between 133 and 162.1.
P(133 < X < 162.1) = ________

Find the probability that a sample of size n=217 is randomly selected with a mean between 133 and 162.1.
P(133 < M < 162.1) = _______________

Part 6

A population of values has a normal distribution with μ=179 and σ=98.2. You intend to draw a random sample of size n=75.

Find the probability that a sample of size n=75 is randomly selected with a mean less than 181.3.
P(M < 181.3) = ___________

Solutions

Expert Solution

1)

µ =    198.9                              
σ =    2.3                              
n=   22                              
proportion=   0.5200                              
                                  
Z value at    0.52   =   0.050   (excel formula =NORMSINV(   0.52   ) )          
z=(x-µ)/(σ/√n)                                  
so, X=z * σ/√n +µ=   0.050   *   2.3   / √    22   +   198.9   =   198.92(answer)

2)

µ =    513                                      
σ =    96                                      
n=   1                                      
                                          
X =   616                                      
                                          
Z =   (X - µ )/(σ/√n) = (   616   -   513   ) / (    96   / √   1   ) =   1.073  
                                          
P(X ≥   616   ) = P(Z ≥   1.07   ) =   P ( Z <   -1.073   ) =    0.1417           (answer)
------------------

µ =    513                                      
σ =    96                                      
n=   5                                      
                                          
X =   616                                      
                                          
Z =   (X - µ )/(σ/√n) = (   616   -   513   ) / (    96   / √   5   ) =   2.399  
                                          
P(X ≥   616   ) = P(Z ≥   2.40   ) =   P ( Z <   -2.399   ) =    0.0082           (answer)

3)

µ =    152.8                                      
σ =    59.7                                      
n=   1                                      
we need to calculate probability for ,                                          
140.9   ≤ X ≤    164.3                                  
X1 =    140.9   ,    X2 =   164.3                          
                                          
Z1 =   (X1 - µ )/(σ/√n) = (   140.9   -   152.8   ) / (   59.7   / √   1   ) =   -0.20  
Z2 =   (X2 - µ )/(σ/√n) = (   164.3   -   152.8   ) / (   59.7   / √   1   ) =   0.19  
                                          
P (   140.9   < X <    164.3   ) =    P (    -0.20   < Z <    0.19   )       
                                          
= P ( Z <    0.19   ) - P ( Z <   -0.20   ) =    0.576   -    0.421   =    0.1554       (answer)

---------------------------------

µ =    152.8                                      
σ =    59.7                                      
n=   211                                      
we need to calculate probability for ,                                          
140.9   ≤ X ≤    164.3                                  
X1 =    140.9   ,    X2 =   164.3                          
                                          
Z1 =   (X1 - µ )/(σ/√n) = (   140.9   -   152.8   ) / (   59.7   / √   211   ) =   -2.90  
Z2 =   (X2 - µ )/(σ/√n) = (   164.3   -   152.8   ) / (   59.7   / √   211   ) =   2.80  
                                          
P (   140.9   < X <    164.3   ) =    P (    -2.90   < Z <    2.80   )       
                                          
= P ( Z <    2.80   ) - P ( Z <   -2.90   ) =    0.997   -    0.002   =    0.9955       (answer)

4)

µ =    164.8                                      
σ =    37.2                                      
n=   108                                      
we need to calculate probability for ,                                          
154.1   ≤ X ≤    169.8                                  
X1 =    154.1   ,    X2 =   169.8                          
                                          
Z1 =   (X1 - µ )/(σ/√n) = (   154.1   -   164.8   ) / (   37.2   / √   108   ) =   -2.99  
Z2 =   (X2 - µ )/(σ/√n) = (   169.8   -   164.8   ) / (   37.2   / √   108   ) =   1.40  
                                          
P (   154.1   < X <    169.8   ) =    P (    -2.99   < Z <    1.40   )       
                                          
= P ( Z <    1.40   ) - P ( Z <   -2.99   ) =    0.919   -    0.001   =    0.9174       (answer)
--------------

5)

µ =    143.9                                      
σ =    89.6                                      
n=   1                                      
we need to calculate probability for ,                                          
133   ≤ X ≤    162.1                                  
X1 =    133   ,    X2 =   162.1                          
                                          
Z1 =   (X1 - µ )/(σ/√n) = (   133   -   143.9   ) / (   89.6   / √   1   ) =   -0.12  
Z2 =   (X2 - µ )/(σ/√n) = (   162.1   -   143.9   ) / (   89.6   / √   1   ) =   0.20  
                                          
P (   133   < X <    162.1   ) =    P (    -0.12   < Z <    0.20   )       
                                          
= P ( Z <    0.20   ) - P ( Z <   -0.12   ) =    0.580   -    0.452   =    0.1289       (answer)
--------------------

µ =    143.9                                      
σ =    89.6                                      
n=   217                                      
we need to calculate probability for ,                                          
133   ≤ X ≤    162.1                                  
X1 =    133   ,    X2 =   162.1                          
                                          
Z1 =   (X1 - µ )/(σ/√n) = (   133   -   143.9   ) / (   89.6   / √   217   ) =   -1.79  
Z2 =   (X2 - µ )/(σ/√n) = (   162.1   -   143.9   ) / (   89.6   / √   217   ) =   2.99  
                                          
P (   133   < X <    162.1   ) =    P (    -1.79   < Z <    2.99   )       
                                          
= P ( Z <    2.99   ) - P ( Z <   -1.79   ) =    0.999   -    0.037   =    0.9621       (answer)

6)

µ =    179                                      
σ =    98.2                                      
n=   75                                      
                                          
X =   181.3                                      
                                          
Z =   (X - µ )/(σ/√n) = (   181.3   -   179.00   ) / (   98.200   / √   75   ) =   0.20  
                                          
P(X < 181.3   ) = P(Z ≤   0.203   ) =   0.5804                       (answer)


Related Solutions

1. A company produces steel rods. The lengths of the steel rods are normally distributed with...
1. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 243.6-cm and a standard deviation of 2.2-cm. For shipment, 22 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 242.8-cm and 244.3-cm. P(242.8-cm < ¯x¯ < 244.3-cm) = 2. CNNBC recently reported that the mean annual cost of auto insurance is 1031 dollars. Assume the standard deviation is...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 162.4-cm and a standard deviation of 0.6-cm. For shipment, 16 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 162.6-cm. P(¯xx¯ < 162.6-cm) = B. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 246.8-cm and a standard...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 167.1-cm and a standard deviation of 0.6-cm. For shipment, 6 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N( , ) What is the distribution of ¯xx¯? ¯xx¯ ~ N( , ) For a single randomly selected steel rod, find the probability that the length is between 166.9-cm...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 195.2-cm and a standard deviation of 0.8-cm. For shipment, 22 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 195.1-cm. P(M < 195.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 143.6-cm and a standard deviation of 0.8-cm. For shipment, 41 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of X ? X ~ N(,) What is the distribution of ¯x ? ¯x ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 143.4-cm and 143.5-cm....
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 222-cm and a standard deviation of 1.5-cm. For shipment, 9 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 222.1-cm. P(M < 222.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 124.7-cm and a standard deviation of 1.6-cm. For shipment, 17 steel rods are bundled together. Find P83, which is the average length separating the smallest 83% bundles from the largest 17% bundles. P83 = -cm Please provide a step-by-step!
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 106.4-cm and a standard deviation of 1.8-cm. For shipment, 9 steel rods are bundled together. Round all answers to four decimal places if necessary. A. What is the distribution of X? X ~ N(     ,     ) B. What is the distribution of ¯x? ¯x ~ N(      ,    ) C. For a single randomly selected steel rod, find the probability that the length...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 207.2-cm and a standard deviation of 2.3-cm. For shipment, 17 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N(,) What is the distribution of ¯xx¯? ¯xx¯ ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 207.4-cm and 207.9-cm. For a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 127.3-cm and a standard deviation of 1.7-cm. Find the proportion of steel rods with lengths between 130.7 cm and 132.2 cm. Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT