Question

In: Statistics and Probability

A company produces steel rods. The lengths of the steel rods are normally distributed with a...

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 124.7-cm and a standard deviation of 1.6-cm. For shipment, 17 steel rods are bundled together.

Find P83, which is the average length separating the smallest 83% bundles from the largest 17% bundles.
P83 = -cm

Please provide a step-by-step!

Solutions

Expert Solution

Given that,

mean = = 124.7 - cm.

standard deviation = = 1.6 - cm.

n = 17

=   = 124.7

= / n = 1.6/ 17 = 0.39

Using standard normal table

P(Z < z) = 83%

P(Z < z ) = 0.83

P(Z < 0.955 ) = 0.83

z = 0.955

Using z-score formula

= z * +

= 0.955 * 0.39 + 124.7

= 125.1

P83 = 125.1 - cm.


Related Solutions

A. A company produces steel rods. The lengths of the steel rods are normally distributed with...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 162.4-cm and a standard deviation of 0.6-cm. For shipment, 16 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 162.6-cm. P(¯xx¯ < 162.6-cm) = B. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 246.8-cm and a standard...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 167.1-cm and a standard deviation of 0.6-cm. For shipment, 6 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N( , ) What is the distribution of ¯xx¯? ¯xx¯ ~ N( , ) For a single randomly selected steel rod, find the probability that the length is between 166.9-cm...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 195.2-cm and a standard deviation of 0.8-cm. For shipment, 22 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 195.1-cm. P(M < 195.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 143.6-cm and a standard deviation of 0.8-cm. For shipment, 41 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of X ? X ~ N(,) What is the distribution of ¯x ? ¯x ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 143.4-cm and 143.5-cm....
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 222-cm and a standard deviation of 1.5-cm. For shipment, 9 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 222.1-cm. P(M < 222.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 106.4-cm and a standard deviation of 1.8-cm. For shipment, 9 steel rods are bundled together. Round all answers to four decimal places if necessary. A. What is the distribution of X? X ~ N(     ,     ) B. What is the distribution of ¯x? ¯x ~ N(      ,    ) C. For a single randomly selected steel rod, find the probability that the length...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 207.2-cm and a standard deviation of 2.3-cm. For shipment, 17 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N(,) What is the distribution of ¯xx¯? ¯xx¯ ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 207.4-cm and 207.9-cm. For a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 127.3-cm and a standard deviation of 1.7-cm. Find the proportion of steel rods with lengths between 130.7 cm and 132.2 cm. Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 226.9-cm and a standard deviation of 1.6-cm. For shipment, 47 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N(,) What is the distribution of ¯xx¯? ¯xx¯ ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 227-cm and 227.1-cm. For a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 93.6-cm and a standard deviation of 1.6-cm. For shipment, 30 steel rods are bundled together. Find P32, which is the average length separating the smallest 32% bundles from the largest 68% bundles. P32 =___________ -cm Enter your answer as a number accurate to 2 decimal place.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT