Question

In: Statistics and Probability

A company produces steel rods. The lengths of the steel rods are normally distributed with a...

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 222-cm and a standard deviation of 1.5-cm. For shipment, 9 steel rods are bundled together.

Find the probability that the average length of a randomly selected bundle of steel rods is less than 222.1-cm.
P(M < 222.1-cm) =

Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Solutions

Expert Solution

A company produces steel rods.

The length of the steel rods are normally distributed with a mean of 222 cm and a standard deviation of 1.5 cm.

For shipment, 9 steel rods are bundled together.

Now, if X be the length of a randomly selected rod, then X follows normal with mean 222 cm and standard deviation of 1.5 cm.

Now, if M be the average length of a randomly selected bundle, then M will also follow normal distribution.

We note,

So, we can say that the average length M of a bundle, follows normal distribution with mean 222 and standard deviation of 0.5.

This means,

Z=(M-222)/0.5 follows standard normal with mean 0 and standard deviation of 1.

We have to find

Where, Z is the standard normal variate.

Where, phi is the distribution function of the standard normal variate.

From the standard normal table, this becomes

The answer is

The probability, that the average length of a randomly selected bundle of steel rods is less than 222.1 cm, is 0.5793.


Related Solutions

A. A company produces steel rods. The lengths of the steel rods are normally distributed with...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 162.4-cm and a standard deviation of 0.6-cm. For shipment, 16 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 162.6-cm. P(¯xx¯ < 162.6-cm) = B. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 246.8-cm and a standard...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 167.1-cm and a standard deviation of 0.6-cm. For shipment, 6 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N( , ) What is the distribution of ¯xx¯? ¯xx¯ ~ N( , ) For a single randomly selected steel rod, find the probability that the length is between 166.9-cm...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 195.2-cm and a standard deviation of 0.8-cm. For shipment, 22 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 195.1-cm. P(M < 195.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 143.6-cm and a standard deviation of 0.8-cm. For shipment, 41 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of X ? X ~ N(,) What is the distribution of ¯x ? ¯x ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 143.4-cm and 143.5-cm....
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 124.7-cm and a standard deviation of 1.6-cm. For shipment, 17 steel rods are bundled together. Find P83, which is the average length separating the smallest 83% bundles from the largest 17% bundles. P83 = -cm Please provide a step-by-step!
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 106.4-cm and a standard deviation of 1.8-cm. For shipment, 9 steel rods are bundled together. Round all answers to four decimal places if necessary. A. What is the distribution of X? X ~ N(     ,     ) B. What is the distribution of ¯x? ¯x ~ N(      ,    ) C. For a single randomly selected steel rod, find the probability that the length...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 207.2-cm and a standard deviation of 2.3-cm. For shipment, 17 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N(,) What is the distribution of ¯xx¯? ¯xx¯ ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 207.4-cm and 207.9-cm. For a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 127.3-cm and a standard deviation of 1.7-cm. Find the proportion of steel rods with lengths between 130.7 cm and 132.2 cm. Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 226.9-cm and a standard deviation of 1.6-cm. For shipment, 47 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N(,) What is the distribution of ¯xx¯? ¯xx¯ ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 227-cm and 227.1-cm. For a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 93.6-cm and a standard deviation of 1.6-cm. For shipment, 30 steel rods are bundled together. Find P32, which is the average length separating the smallest 32% bundles from the largest 68% bundles. P32 =___________ -cm Enter your answer as a number accurate to 2 decimal place.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT