Question

In: Math

Suppose you have selected a random sample of ?=13 measurements from a normal distribution. Compare the...

Suppose you have selected a random sample of ?=13 measurements from a normal distribution. Compare the standard normal z values with the corresponding t values if you were forming the following confidence intervals.

a)    80% confidence interval
?=
?=

(b)    90% confidence interval
?=
?=

(c)    99% confidence interval
?=
?=

Solutions

Expert Solution


Solution :

Given that,

a ) At 80% confidence level the z is ,

= 1 - 80% = 1 - 0.80 = 0.20

/ 2 = 0.20 / 2 = 0.01

Z/2 = Z0.01 = 2.326

n = 13

Degrees of freedom = df = n - 1 = 13 - 1 = 12

At 80% confidence level the z is ,

= 1 - 80% = 1 - 0.80 = 0.20

/ 2 = 0.20 / 2 = 0.01

t /2,df = t0.01,12 = 2.681

b ) At 90% confidence level the z is ,

= 1 - 90% = 1 - 0.90 = 0.10

/ 2 = 0.10 / 2 = 0.05

Z/2 = Z0.05 = 1.645

n = 13

Degrees of freedom = df = n - 1 = 13 - 1 = 12

At 90% confidence level the z is ,

= 1 - 90% = 1 - 0.90 = 0.10

/ 2 = 0.10 / 2 = 0.05

t /2,df = t0.05,12 =1.782

c ) At 99% confidence level the z is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

Z/2 = Z0.005 = 2.576

n = 13

Degrees of freedom = df = n - 1 = 13 - 1 = 12

At 99% confidence level the t is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

t /2,df = t0.005,12 = 3.054


Related Solutions

Suppose you have selected a random sample of n =5 measurements from a normal distribution. Compare...
Suppose you have selected a random sample of n =5 measurements from a normal distribution. Compare the standard normal z values with the corresponding t values if you were forming the following confidence intervals. (a)    8080% confidence interval z= t= (b)    9898% confidence interval z= t= (c)    9595% confidence interval z= t= ConfidenceIntervals
Suppose, for a random sample selected from a normal population, we have the values of the...
Suppose, for a random sample selected from a normal population, we have the values of the sample mean x ̄ = 67.95 and the standard deviation s = 9. a. Construct a 95% confidence interval for population mean μ assuming the sample size n = 16. b. Construct a 90% confidence interval for population mean μ assuming n = 16. c. Obtain the width of the confidence intervals calculated in a and b. Is the width of 90% confidence interval...
Question #3. A random sample of n = 9 is selected from a normal distribution with...
Question #3. A random sample of n = 9 is selected from a normal distribution with μ = 80 and σ=12. What is the probability that the sample mean will be between 75 and 86? Report to the thousandths Question #4. A random sample of n= 4 is obtained from a normal distribution μ= 30,σ= 8. What is the probability the sample mean will be smaller than M = 22? Report to the thousandths Question #5. A random sample of...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution,...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution, where μ is unknown but σ2 is known, and it is of interest to test H0: μ = μ0 versus H1: μ ̸= μ0 for some value μ0. The R code below plots the power curve of the test Reject H0 iff |√n(X ̄n − μ0)/σ| > zα/2 for user-selected values of μ0, n, σ, and α. For a sequence of values of μ,...
The following random sample was selected from a normal distribution 3.5, 5.4, 1.3, 1.8, 4.3 then...
The following random sample was selected from a normal distribution 3.5, 5.4, 1.3, 1.8, 4.3 then the 95% confidence interval to estimate the population of the mean. I am having a tough time calculating I feel I just need an idea how to calculate this type of scenario homework properly.
For this question assume that we have a random sample from a normal distribution with unknown...
For this question assume that we have a random sample from a normal distribution with unknown mean but known variance. (a) Suppose that we have 36 observations, the sample mean is 5, and the population variance is 9. Construct a 95% confidence interval for the population mean. (b) Repeat the preceding with a population variance of 25 rather than 9. (c) Repeat the preceding with a sample size of 25 rather than 36. (d) Repeat the preceding but construct a...
A random sample of ? measurements was selected from a population with standard deviation ?=13.7 and...
A random sample of ? measurements was selected from a population with standard deviation ?=13.7 and unknown mean ?. Calculate a 99 % confidence interval for ? for each of the following situations: (a) n=55, x¯=100.4 ≤?≤ (b)  n=75, x¯=100.4 ≤?≤ (c)  n=105, x¯=100.4 ≤?≤
A random sample of ? measurements was selected from a population with standard deviation ?=16.6 and...
A random sample of ? measurements was selected from a population with standard deviation ?=16.6 and unknown mean ?. Calculate a 90 % confidence interval for ? for each of the following situations: (a) ?=65, ?⎯⎯⎯=86.1 (b) ?=80, ?⎯⎯⎯=86.1 (c) ?=100, ?⎯⎯⎯=86.1
The random sample shown below was selected from a normal distribution. 3​, 6​, 5​, 9​, 9​,...
The random sample shown below was selected from a normal distribution. 3​, 6​, 5​, 9​, 9​, 4 Complete parts a and b. a. Construct a 95​% confidence interval for the population mean mu. b.Assume that the sample mean x and sample standard deviation s remain the same as those you just calculated but that are based on a sample of n=25 observations. Repeat part a. What is the effect of increasing the sample size on the width of the confidence...
The random sample shown below was selected from a normal distribution. 1010​, 44​, 77​, 66​, 77​,...
The random sample shown below was selected from a normal distribution. 1010​, 44​, 77​, 66​, 77​, 22    Complete parts a and b. a. Construct a 9595​% confidence interval for the population mean muμ. left parenthesis nothing comma nothing right parenthesis3.113.11,8.898.89 ​(Round to two decimal places as​ needed.)b. Assume that sample mean x overbarx and sample standard deviation ss remain exactly the same as those you just calculated but that are based on a sample of nnequals=2525 observations. Repeat part...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT