In: Physics
Vector A has a magnitude of 4 m/s and it is on the positive x axis .
Vector B has a magnitude of 6 m/s and forms a 30 degrees angle with the positive x axis.
Vector C has a magnitude of 8 m/s and forms a 60 degree angle with the negative x axis.
Find:
a) The magnitude of A + B + C = D
Give your answer with two significant figures.
b) The angle vector D form with the x axis.
Give the answer with two significant figures.
c) What quadrant is vector D?
Suppose given that Vector is R and it makes angle with +x-axis, then it's components are given by:
Rx = R*cos
Ry = R*sin
Now we need to find A + B + C
Using above rule:
A = 4 m/s, direction +ve x-axis
Ax = 4*cos 0 deg = 4 m/sec
Ay = 4*sin 0 deg = 0 m/s
B = 6 m/s, direction 30 deg with +ve x-axis
Bx = 6*cos 30 deg = 5.20 m/s
By = 6*sin 30 deg = 3.00 m/s
C = 8 m/s, direction 60 deg with -ve x-axis
Cx = -8*cos 60 deg = -4.0 m/s
Cy = 8*sin (60 deg) = 6.93 m/s
Now
D = A + B + C
D = (Ax + Bx + Cx) i + (Ay + By + Cy) j
D = (4 + 5.20 - 4) i + (0 + 3.00 - 6.93) j
D = 5.20 i - 3.93 j
So Magnitude of D will be
|D| = sqrt (Rx^2 + Ry^2)
|D| = sqrt (5.20^2 + (-3.93)^2)
|D| = 6.518 m/s = 6.5 m/sec
Direction will be given by:
theta = arctan (Ry/Rx)
theta = arctan ((-3.93)/5.20)
theta = -37.08 deg = -37 deg angle with clockwise with the -ve x axis
Since x > 0 and y < 0, then vector will be in 4th quadrant
Please Upvote.