In: Math
We throw a die independently four times and let X denote the minimal value rolled. (a) What is the probability that X ≥ 4. (b) Compute the PMF of X. (c) Determine the mean and variance of X.
total number of outcomes =64 =1296 (As there are 4 outcomes possible on each roll)
a)P(X>=4)=P(X=4)+P(X=5)+P(X=6)=65/1296+15/1296+1/1296=81/1296
b)
Pmf of X:
P(X=1)=P(at least one dice show 1)=1-P(no dice show 1)=1-(5/6)4 =671/1296
P(X=2)=P(one dice from 6 have 2 and other three have 2 or more)
=P(all dice shows 2 or more-all dice show 3 or more)=(54-44)/64 =369/1296
P(X=3)=(44-34)/64 =175/1296
P(X=4)=(34-24)/64 =65/1296
P(X=5)=(24-14)/64 =15/1296
P(X=6)=1/1296
c)
x | f(x) | xP(x) | x2P(x) |
1 | 0.51775 | 0.518 | 0.518 |
2 | 0.28472 | 0.569 | 1.139 |
3 | 0.13503 | 0.405 | 1.215 |
4 | 0.05015 | 0.201 | 0.802 |
5 | 0.01157 | 0.058 | 0.289 |
6 | 0.00077 | 0.005 | 0.028 |
total | 1.755 | 3.992 | |
E(x) =μ= | ΣxP(x) = | 1.7554 | |
E(x2) = | Σx2P(x) = | 3.9915 | |
Var(x)=σ2 = | E(x2)-(E(x))2= | 0.9101 | |
std deviation= | σ= √σ2 = | 0.9540 |
x | f(x) | xP(x) | x2P(x) |
1 | 671/1296 | 0.518 | 0.518 |
2 | 369/1296 | 0.569 | 1.139 |
3 | 175/1296 | 0.405 | 1.215 |
4 | 65/1296 | 0.201 | 0.802 |
5 | 15/1296 | 0.058 | 0.289 |
6 | 1/1296 | 0.005 | 0.028 |
total | 1.755 | 3.992 | |
E(x) =μ= | ΣxP(x) = | 1.7554 | |
E(x2) = | Σx2P(x) = | 3.9915 | |
Var(x)=σ2 = | E(x2)-(E(x))2= | 0.9101 | |
from above mean=1.7554
Var(X)=0.9101