Question

In: Physics

A luggage handler pulls a 18.0-kg suitcase up a ramp inclined at 34.0 ∘ above the...

A luggage handler pulls a 18.0-kg suitcase up a ramp inclined at 34.0 ∘ above the horizontal by a force F⃗ of magnitude 169 N that acts parallel to the ramp. The coefficient of kinetic friction between the ramp and the incline is 0.250. The suitcase travels 3.80 m along the ramp.

a)Calculate the work done on the suitcase by F⃗ . Express your answer with the appropriate units.

b)Calculate the work done on the suitcase by the gravitational force.

c)Calculate the work done on the suitcase by the normal force.

d)Calculate the work done on the suitcase by the friction force.

e)Calculate the total work done on the suitcase.

f)If the speed of the suitcase is zero at the bottom of the ramp, what is its speed after it has traveled 3.80 m along the ramp?

Solutions

Expert Solution

1) Expression for work done:

work = F x d = 169 N x 3.80 m = 642.2 J

Round off the result to 3 significant digits

work = 642 J

-------------------------------------------------------------------------------------

2) Work done by gravity:

work = mgh = 18kg * 9.8m/s² * 3.8m * sin34º = 374.8 J

Round off the result to 3 significant digits

work = 375 J

--------------------------------------------------------------------------------

3) Work done by normal force is always zero.

W = 0 J

-------------------------------------------------------------------------------

4) Expression for work done by frictional force.

friction work = µmgdcosΘ

work = 0.250 * 18kg * 9.8m/s² * 3.80 m * cos34º = 138.9 J

Round off the result to 3 significant digits

work = 139 J

---------------------------------------------------------------------------------------

5) total work is algebriac sum of all above works. Here, gravity and frcitional forces acting oppoiste to direction of motion. Therefore,

Net work done = (642.2 J - 374.8 - 138.9) J = 128.4 J

Round off the result to 3 significant digits

work = 128 J

--------------------------------------------------------------------------------------------

6) Apply work energy theorem, that is work done is equal to net kietic energy.

KE = 128.4 J = ½ mv² = ½ * 18kg * v²

Solve the equation for velocity

v = 3.777 m/s

Round off the result to 3 significant digits

work = 3.78 m/s


Related Solutions

A luggage handler pulls a 19.0-kg suitcase up a ramp inclined at 34.0
A luggage handler pulls a 19.0-kg suitcase up a ramp inclined at 34.0 ∘ above the horizontal by a force F⃗  of magnitude 169 N that acts parallel to the ramp. The coefficient of kinetic friction between the ramp and the incline is 0.270. The suitcase travels 3.90 m along the ramp.Part ACalculate the work done on the suitcase by F⃗ .Express your answer with the appropriate units.WF =JPart BCalculate the work done on the suitcase by the gravitational force.Express your answer...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an angle ?=19.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is ?k=0.305 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of ?=2.89 m/s2 , calculate the tension ?T in the rope. Use ?=9.81 m/s2 for the acceleration due to gravity.
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0°...
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0° with respect to the horizontal, as shown below. The coefficient of kinetic friction between the box and the ramp is 0.165, and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of 2.09 m/s2, what must the tension FT in the rope be? Use g = 9.81 m/s2 for the acceleration due to...
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an...
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an angle θ=15.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is μk=0.295 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a=3.09 m/s2, calculate the tension FT in the rope. Use g=9.81 m/s2 for the acceleration due to gravity.
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 29 ∘ angle. The block's initial speed is 11 m/s . The coefficient of kinetic friction of wood on wood is μk=0.200. What vertical height does the block reach above its starting point? What speed does it have when it slides back down to its starting point?
A 20.0 kg package is positioned at the bottom of an inclined ramp. The ramp has...
A 20.0 kg package is positioned at the bottom of an inclined ramp. The ramp has a length of 15.0 m, and an inclination angle of 34.0°above the horizontal floor. A constant force having a magnitude 290 N, and directed parallel to the horizontal floor, is applied to the package in order to push it up the ramp. While the package is moving, the ramp exerts a constant frictional force of 65.0 N on it. a. Draw a free-body diagram...
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from...
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from the horizontal. It is given an initial velocity v0 = 15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is μk = 0.382 and the coefficient of static friction is μs = 0.687. How far up the ramp (in the direction along the ramp) does the block go before it comes to a stop? ___________m
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.500 and the constant of the spring is k = 6000 N/m. What is the net impulse exerted on...
A 25.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 25.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30.0 ◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.400 and the constant of the spring is k = 5000 N/m. How far does the crate compress...
1. A 4 kg mass is resting on a ramp inclined at an angle of 30...
1. A 4 kg mass is resting on a ramp inclined at an angle of 30 degrees with respect to the horizontal. A string is attached to the 4 kg mass and passes over a frictionless pulley and is connected to a 5 kg mass hanging over the side. If the coefficient of friction between the ramp and the 4 kg mass if 0.3 find; A) The acceleration of both masses B) The tension in the string C) Find the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT