In: Statistics and Probability
Post pairs of variables that exhibit positive correlation, negative correlation and no correlation. Could any of the proposed correlated variables be the result of causation? How could an experiment be designed to establish causation? Would it be ethical to do such an experiment? What percentage of the variation in the response variable do you think can be explained by the predictor variable? Do you think there are any lurking variables in your situation?
Sample Student Response
Positive Correlation: rain and the rate the grass grows. Yes there is causation. We could do an experiment to measure the effect or rain on grass growth rate. We can just observe this, but if we want to say causation we need experimentation. I would guess about 75% of the variation in grass growth rate could be explained by the amount of rainfall. Lurking variables might be temperature, fertilizer, sunshine, type of soil...
Negative Correlation: The more I study the less free time I have. Yes there is potential causation. We could design an experiment on this to see if additional studying does reduce free time for people. This may be unethical if it would negatively affect a student’s grade, so it might be best to just do an observational study. I would guess about 50% of the variation in free time could be explained by the amount to study time. Lurking variables might be hours at the workplace, family obligations, sickness, laziness,...
No Correlation: A person’s head circumference and the quantity of text messages a day. The rest of these questions are moot.
One of the central tenets of the pro-vaccine world is that correlation does not imply causation – but it is misused and frequently abused by many writers. We, the pro-science/pro-vaccine world, dismiss correlation, if real correlation can be shown, as robust evidence indicative of any causal relationship.
Conflating causation and correlation is somewhat different than the logical fallacy of post hoc ergo propter hoc, where one thinks one event follows the first event because of the existence of the first event. I’m sure all good luck charms and superstitions, like walking under a ladder, are related to the post hoc ergo propter hoc fallacy. So if I walk under a ladder, then trip on a black cat, then crash into a mirror, I don’t immediately blame the initial act of walking under the ladder. I just assume I’m clumsy.
Correlation and causation are a very critical part of scientific research. Basically, correlation is the statistical relationship between two random sets of data. The closer the relationship, the higher the correlation. However, without further data, correlation may not imply causation, that the one set of data has some influence over the other.
An Example
Let’s invent a massive study to investigate car accidents after vaccinations. In our imaginary study, we find that the rate of automobile accidents with a child in the back seat after a child is vaccinated is higher than the background rate of automobile accidents with children in the back seat who aren’t vaccinated. Does the vaccination itself cause the higher rate of accidents? Well, I suppose you could make an argument that a post-vaccinated child is still screaming or something, distracting the driver, but that variable could happen with unvaccinated children just screaming because they didn’t get their GMO-free, organic, free-range ice cream cone.
But did the vaccine itself cause the accident? Or is it some other factor? Like the driver being stressed because of going to the pediatrician for the vaccine because she read all those lies from the antivaccination groupies? Or because her child is a bit fussy after vaccination, because it happens? In other words, we have data, but it really has no meaning without establishing a reasonable level of causality.
So when you read an article in one of the antivaccination sites that X number of girls died because of the HPV vaccine, or that because the rate of autism has increased while the number of vaccines has increased, the increased vaccination caused the increased rate of autism, immediately, one of us (you know, the pro-science skeptics) will proclaim correlation does not imply causation.
The problem with that proclamation is that it’s too simple. Like everything in science there is more to the understanding of relationship between correlation and causation than simply dismissing it.
For example, the whole science behind vaccines is really showing strong correlation. We know that the smallpox vaccine eradicated smallpox, not because we had direct evidence of causality between the vaccine and the eradication of smallpox, it’s because we had overwhelming correlation along with other types of direct evidence that established causality. And it is this other evidence that is actually more powerful in establishing correlation and causation, or, alternatively, that the evidence of correlation has no relationship to causality.
Evaluating correlation and causation
So how do we know if correlation does not imply causation – alternatively, when do we know it does imply it? There are seven additional tests of the correlation data that could be used to move a finding of correlation between two sets of data from an unknown causal relationship to a presumed one.
So correlation by itself does not imply causation. But when one gathers other evidence, that requires separate studies and analysis, correlation becomes one of the fundamental pieces of evidence that establish causality.
Summary
Like I wrote previously, research isn’t easy. One just can’t state that they see an observed correlation, then immediately state that one causes the other. They can’t see an increase in the autism rate, along side an increase in the number of vaccinations, then state, after looking at those numbers for an hour, that vaccines cause autism. You can’t without further, more complex, data that supports the hypothesis.
Does one need each of those seven additional data points to show causality? Yes (although 4&5 can be combined). Again, those who try to oversimplify the process are the ones with the agenda. Those who try to make it easy are the ones who a trying to find data that proves their dogma and beliefs, rather than trying to determine what the data actually states. The data should drive the conclusion, as opposed to taking the easy course–searching for data to establish a preconceived conclusion.
Research is hard work. And if a researcher, or some random person on the internet, wants to establish causation from correlation, then they need to provide a lot more evidence. It’s not easy, but it can be done.