Question

In: Physics

Three children, each of mass 15 kg, ride at the edge of a frictionless merry-go-round of...

Three children, each of mass 15 kg, ride at the edge of a frictionless merry-go-round of mass 163 kg and radius 1.2 meters.  The children jump off outward, directly away from the center, taking zero angular momentum with them.   If the angular velocity of the merry-go-round before they jumped was  = 0.3 rad/s, what is its angular velocity after they jump?

Treat the merry-go-round as a solid cylinder.

2 sig figs, units (rad/s)

Solutions

Expert Solution

Data provided in the question;

Mass of each child = m = 15 kg

Mass of merry-go-round = M = 163 kg

Radius of merry-go-round = R = 1.2 m

Initial angular velocity (Before jumping) = 1 = 0.3 rad/s

​​​​​​In the initial case (before jumping off the merry-go-round), children and merry-go-round both are moving together and children are sitting on the edge of the merry-go-round.

Thus, the total moment of inertia initially (I​​​​​​1​​​​​) will be the summation of moments of inertia of the merry-go-round (solid cylinder) and all the children.

Substituting, the values in the above equation;

And the initial angular velocity

​​​​​​After the children jumping off, only merry-go-round will be in motion and hence, the total moment of inertia (I​​​​​​2) in the later case will be equal to the moment of inertia of the merry-go-round.

Substituting the values;

And we need to calculate, the final angular velocity ().

​​​​​​This, using the law of conservation of angular momentum i.e.

​​​​​​​​​​​​Substituting all the values, we get

​​​​​​Hence, the angular velocity of the merry-go-round after the children jumping off it is equal to 0.47 rad/s.


Related Solutions

Three children are riding on the edge of a merry-go-round that is 105 kg, has a...
Three children are riding on the edge of a merry-go-round that is 105 kg, has a 1.60-m radius, and is spinning at 16.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm? Ignore friction, and assume that the merry-go-round can be treated as a solid disk and the children as points.
Three children are riding on the edge of a merry-go-round that is 122 kg, has a...
Three children are riding on the edge of a merry-go-round that is 122 kg, has a 1.60 m radius, and is spinning at 17.3 rpm. The children have masses of 19.9, 29.5, and 40.8 kg. If the child who has a mass of 29.5 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm?
Three children are riding on the edge of a merry-go-round that is 122 kg, has a...
Three children are riding on the edge of a merry-go-round that is 122 kg, has a 1.60 m radius, and is spinning at 15.3 rpm. The children have masses of 19.9, 29.0, and 38.8 kg. If the child who has a mass of 29.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm?
Three children are riding on the edge of a merry‑go‑round that has a mass of 105...
Three children are riding on the edge of a merry‑go‑round that has a mass of 105 kg and a radius of 1.60 m . The merry‑go‑round is spinning at 22.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the merry‑go‑round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the merry‑go‑round can be treated as a solid disk and the children...
Three children are riding on the edge of a merry‑go‑round that has a mass of 105...
Three children are riding on the edge of a merry‑go‑round that has a mass of 105 kg and a radius of 1.70 m . The merry‑go‑round is spinning at 24.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the merry‑go‑round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the merry‑go‑round can be treated as a solid disk and the children...
Three children are riding on the edge of a merry‑go‑round that has a mass of 105...
Three children are riding on the edge of a merry‑go‑round that has a mass of 105 kg and a radius of 1.60 m . The merry‑go‑round is spinning at 16.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the merry‑go‑round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the merry‑go‑round can be treated as a solid disk and the children...
A child of mass 50 kg is standing at the edge of a playground merry-go-round of...
A child of mass 50 kg is standing at the edge of a playground merry-go-round of diameter 3 m. Other children push the merry-go-round faster and faster until the first child's feet begin to slip. (a) If the coefficient of friction between the shoes and the rotating surface is 0.2, how long does it take the merry-go-round to make one revolution? (b) How fast is the first child traveling when he begins to slip? (c) What is the angle between...
Two children, each with a mass of 25.4 kg, are at fixed locations on a merry-go-round...
Two children, each with a mass of 25.4 kg, are at fixed locations on a merry-go-round (a disk that spins about an axis perpendicular to the disk and through its center). One child is 0.72 m from the center of the merry-go-round, and the other is near the outer edge, 3.07 m from the center. With the merry-go-round rotating at a constant angular speed, the child near the edge is moving with translational speed of 12.0 m/s. (a) What is...
A 4.0 ? diameter merry-go-round (mass 270 ??) is spinning at 15 ???. A child of...
A 4.0 ? diameter merry-go-round (mass 270 ??) is spinning at 15 ???. A child of 35.0 ?? runs tangent to the merry-go-round at 3.0 ?/?, in the same direction that it is turning, and jumps onto the outer edge. Calculate the merry-go-round’s angular velocity, immediately after the child jumps on.
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of...
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of 200 kg and a radius of 2 meters you can make it spin by applying a force to the rim. This torque increases the angular momentum of the disk. Suppose the force is 20 newtons. How long would you have to apply it to get the wheel spinning 5 times a minute? What would happen to the rate of spin if you then jumped...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT