Question

In: Physics

A 4.0 ? diameter merry-go-round (mass 270 ??) is spinning at 15 ???. A child of...

A 4.0 ? diameter merry-go-round (mass 270 ??) is spinning at 15 ???. A child of 35.0 ?? runs tangent to the merry-go-round at 3.0 ?/?, in the same direction that it is turning, and jumps onto the outer edge. Calculate the merry-go-round’s angular velocity, immediately after the child jumps on.

Solutions

Expert Solution

This is a problem in conservation of angular momentum. The sum of the initial angular momenta of the merry-go-roud and boy will be equal to their combined angular momenta.

Initial angular momenta

  • Merry-go-round

Since its a disk, it moment of inertia is

It angular velocity is

Therefore, its angular momentum is

  • The boy

Considering the boy as a point mass, his angular momentum is

The total initial angular momentum is

Final angular momentum

The moment of inertia of the combined bodies, considering the boy to be a point mass is

Let the final angular velocity be

Therefore, the final angular momentum is

Equating the two, we get


Related Solutions

A brave child decides to grab on to an already spinning merry-go-round. The child is initially...
A brave child decides to grab on to an already spinning merry-go-round. The child is initially at rest and has a mass of 31.5 kg. The child grabs and clings to a bar that is 1.40 m from the center of the merry-go-round, causing the angular velocity of the merry-go-round to abruptly drop from 55.0 rpm to 17.0 rpm. What is the moment of inertia of the merry-go-round with respect to its central axis?
A child of mass 50 kg is standing at the edge of a playground merry-go-round of...
A child of mass 50 kg is standing at the edge of a playground merry-go-round of diameter 3 m. Other children push the merry-go-round faster and faster until the first child's feet begin to slip. (a) If the coefficient of friction between the shoes and the rotating surface is 0.2, how long does it take the merry-go-round to make one revolution? (b) How fast is the first child traveling when he begins to slip? (c) What is the angle between...
Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase,...
Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase, decrease, or remain the same if: (a) He jumps off radially? (b) He jumps backward to land motionless? (c) He jumps straight up and hangs onto an overhead tree branch? (d) He jumps off forward, tangential to the edge?
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of...
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of 200 kg and a radius of 2 meters you can make it spin by applying a force to the rim. This torque increases the angular momentum of the disk. Suppose the force is 20 newtons. How long would you have to apply it to get the wheel spinning 5 times a minute? What would happen to the rate of spin if you then jumped...
A merry-go-round is a common piece of playground equipment. A 3.0-mm-diameter merry-go-round, which can be modeled...
A merry-go-round is a common piece of playground equipment. A 3.0-mm-diameter merry-go-round, which can be modeled as a disk with a mass of 220 kg, is spinning at 24 rpm. John runs tangent to the merry-go-round at 5.6 m/s, in the same direction that it is turning, and jumps onto the outer edge. John's mass is 30 kg.
Three children, each of mass 15 kg, ride at the edge of a frictionless merry-go-round of...
Three children, each of mass 15 kg, ride at the edge of a frictionless merry-go-round of mass 163 kg and radius 1.2 meters.  The children jump off outward, directly away from the center, taking zero angular momentum with them.   If the angular velocity of the merry-go-round before they jumped was  = 0.3 rad/s, what is its angular velocity after they jump? Treat the merry-go-round as a solid cylinder. 2 sig figs, units (rad/s)
sean is at work spinning on a merry-go-round. since his feet are place at the very...
sean is at work spinning on a merry-go-round. since his feet are place at the very edge, his mom is standing 1 foot away, afraid he might fall. sean's distance, d, from his mom is a sinusoidal function of time. suppose that at 1 second, he passes his mom. four seconds later, he passes her again. the diameter of merry-go-round is 8 feet. a) graph D= f(t), where t is time in seconds. label your axes. b) find a possible...
a. A child is sitting on the outer edge of a merry-go-round that is 3.19 m...
a. A child is sitting on the outer edge of a merry-go-round that is 3.19 m in diameter. If the merry-go-round makes 8.9 rev/min, what is the velocity of the child in m/s? b. A markswoman of mass 73 kg shoots a bullet of mass 96 grams at a muzzle velocity of 696 m/s. What should the recoil speed of the markswoman be, if she is standing on a slick surface? c. A golf ball of mass 0.050 kg has...
A merry-go-round is spinning at a rate of 5 revolutions per minute. Cora is sitting 0.5...
A merry-go-round is spinning at a rate of 5 revolutions per minute. Cora is sitting 0.5 m from the center of the merry-go -round and Cameron is sitting right on the edge, 2.0 m from the center. What is the relationship between rotational speed of the two children? a. Cameron's rotational speed is four times as much as Cora's rotational speed b. Cora's rotational speed is the same as Cameron's rotational speed c. Cora's rotational speed is four times as...
A playground merry-go-round is set spinning at 0.20 rev/s and then released. It slows to rest...
A playground merry-go-round is set spinning at 0.20 rev/s and then released. It slows to rest in 25 s. (a) Find the average angular acceleration of the merry-go-round during this time. (b) Assuming now that the angular acceleration is constant, how many turns does it make as it comes to rest?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT