In: Physics
A football is kicked at ground level with a speed of 25 m/s at an angle of 45 degrees to the horizontal. How far down field does it go (assume takeoff and landing at the same height)?
Let us consider the upwards direction as positive and the downwards direction as negative.
Gravitational acceleration = g = -9.81 m/s2
Initial velocity of the football = V = 25 m/s
Angle at which the football is kicked = = 45o
Initial horizontal velocity of the football = Vx = VCos = (25)Cos(45) = 17.68 m/s
Initial vertical velocity of the football = Vy = VSin = (25)Sin(45) = 17.68 m/s
Time taken by the ball to reach the ground again = T
The takeoff and landing of the football are at the same height therefore the vertical displacement of the football is zero.
0 = VyT + gT2/2
0 = Vy + gT/2
0 = 17.68 + (-9.81)T/2
T = 3.604 sec
Horizontal distance covered by the football = R
There is no horizontal force acting on the football therefore the horizontal velocity of the football is zero.
R = VxT
R = (17.68)(3.604)
R = 63.7 m
Distance the football goes down field = 63.7 m