Question

In: Economics

Consider the following production function: f(x,y)=x+y^0.5. If the input prices of x and y are wx...

Consider the following production function: f(x,y)=x+y^0.5. If the input prices of x and y are wx and wy respectively, then find out the combination of x and y that minimizes cost in order to produce output level q. Also find the cost function.

Solutions

Expert Solution


Related Solutions

Consider the following function: f (x , y , z ) = x 2 + y...
Consider the following function: f (x , y , z ) = x 2 + y 2 + z 2 − x y − y z + x + z (a) This function has one critical point. Find it. (b) Compute the Hessian of f , and use it to determine whether the critical point is a local man, local min, or neither? (c) Is the critical point a global max, global min, or neither? Justify your answer.
Consider the production function Q = f(x,y) = xy^2. (a) Totally differentiate this production function. (b)...
Consider the production function Q = f(x,y) = xy^2. (a) Totally differentiate this production function. (b) While holding output constant, solve for dy/dx. What is the economic interpretation of this term? (c) Differentiate once more with respect to x solve for d dx(dy/dx). What is the economic interpretation of this term? (d) Evaluate the marginal products. Are they positive? Diminishing? (e) Evaluate the convexity of isoquant. Does it or does it not contradict with the properties found in previous part?...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does not equal to 0 3. f'(0)=1 Then: a) Show that f(0)=1. (Hint: use the fact that 0+0=0) b) Show that f(x) does not equal to 0 for all x. (Hint: use y= -x with conditions (1) and (2) above.) c) Use the definition of the derivative to show that f'(x)=f(x) for all real numbers x d) let g(x) satisfy properties (1)-(3) above and let...
Consider the economy described by the production function Y = F (K, L x E) =...
Consider the economy described by the production function Y = F (K, L x E) = Kα(LE)1-α (a) Derive per effective worker production function. (b) Assume there is population growth rate, depreciation rate and technology growth rate. -Write the law of motion of k. -Tell how k* will be changed when population growth rate increases with graph. (c) Calculate steady state equilibrium. k∗ = y∗ = c∗ = (d) Calculate gold rule capital stock and output. kgold = ygold =...
A firm's production function is f(x,y) = xayb (x to the power of a times y...
A firm's production function is f(x,y) = xayb (x to the power of a times y to the power of b). Consider the following 10 statements: The production function never exhibits constant returns to scale The production function never exhibit decreasing returns to scale The production function always exhibits constant returns to scale The production function always exhibits increasing returns to scale The production function always exhibits constant returns to scale if a = b The production function always exhibits...
a) Calculate the maximum MaxDisk value of the function f (x,y) = 9 ln * (x^2+(1+1)y^2+(0.5+0.5))...
a) Calculate the maximum MaxDisk value of the function f (x,y) = 9 ln * (x^2+(1+1)y^2+(0.5+0.5)) on the circle disk with the center of origin and radius 4. b) Also calculate the maximum the value MaxBorder that the function assumes on the border.
On R2, consider the function f(x, y) = ( .5y, .5sinx). Show that f is a...
On R2, consider the function f(x, y) = ( .5y, .5sinx). Show that f is a strict contraction on R2. Is the Banach contraction principle applicable here? If so, how many fixed points are there? Can you guess the fixed point?
Problem 2. Consider the linear (perfect substitutes) production function f(x, y) = 12.7x + 19.4y. (A)...
Problem 2. Consider the linear (perfect substitutes) production function f(x, y) = 12.7x + 19.4y. (A) How many units of good y would be a perfect substitute for 1 unit of good x? What is the slope of the firm’s isoquants? (B) Suppose the input prices are (px, py) = (5, 8). What is the slope of the isocost lines? How much output does the firm get when it inputs $1 worth of good x? How much output does the...
1. Answer the following using the production function F(L, K) = L1/2K1/2, input prices fixed at...
1. Answer the following using the production function F(L, K) = L1/2K1/2, input prices fixed at w =4 and v = 9. There are two different types of firms. Big firms have SR capital fixed at 144, and small firms have SR fixed capital of 64. a) Show that for the big firms with K = 144, SCb(q) = q2 /36 + 1296 and for the small firms with fixed capital of 64, SCs(q) = q2/16 + 576. Use this...
Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of...
Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of px = 1 and py = 2. Assuming that graphically good x is on the horizontal axis and good y is on the vertical axis, suppose the consumer chooses to consume 5 units of good x and 13 units of good y. What is the marginal rate of substitution (MRS) equal to?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT