Question

In: Economics

1. Answer the following using the production function F(L, K) = L1/2K1/2, input prices fixed at...

1. Answer the following using the production function F(L, K) = L1/2K1/2, input prices fixed at w =4 and v = 9. There are two different types of firms. Big firms have SR capital fixed at 144, and small firms have SR fixed capital of 64.

a) Show that for the big firms with K = 144, SCb(q) = q2 /36 + 1296 and for the small firms with fixed capital of 64, SCs(q) = q2/16 + 576. Use this to find SMCb(q) and SMCs(q)

b) Show that if the market demand is QD=-1900P + 41040, there is a LR competitive equilibrium with 40 big firms with a fixed capital of 144 and 100 small firms with a fixed capital of 64.

c) What does the fact that firms of different sizes can co-exist in LR equilibrium tell us about the production function? Can you verify that conclusion from the production function?

d)  Show that the LR number of identical firms large firms (K=144) is 84 and this makes the LR price a little bigger than the price in (b).. Explain why “Reality” prevented us from getting the same price as in (b).

Solutions

Expert Solution


Related Solutions

Suppose a production function is given by  F ( K , L ) = K^(1/2) L^(1/2), the...
Suppose a production function is given by  F ( K , L ) = K^(1/2) L^(1/2), the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the long run? c. (5) When...
Suppose that the production function for your firm is given by: F(L,K)=L1/2K1/2 w=$1 and r=$1. In...
Suppose that the production function for your firm is given by: F(L,K)=L1/2K1/2 w=$1 and r=$1. In the long-run, how many workers and capital should you hire in order to produce Q units of output? Select one: a. L=2Q; K=Q b. L=Q; K=Q2 c. L=0.5Q; K=0.5Q d. L=Q; K=Q e. None of the above
Suppose a production function is given by  F ( K , L ) = K 1 2...
Suppose a production function is given by  F ( K , L ) = K 1 2 L 1 2, the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the long...
2. Suppose a production function is given by  F ( K , L ) = K 1...
2. Suppose a production function is given by  F ( K , L ) = K 1 2 L 1 2, the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the...
A rm has production function q = K^1/3 L^2/3. Input prices are w = 1 for...
A rm has production function q = K^1/3 L^2/3. Input prices are w = 1 for labor (L), and r=1 for capital (K). a. Write down the firm's Cost Minimization Problem. Derive the optimality conditions. b. Define the optimal choice of inputs, i.e. solve the Cost Minimization problem above for K and L. c. What is the total cost to produce q=4 units of output?
Consider the production function F(L,K) = L^2/3 K^2/3 . (f) Does this production function exhibit increasing,...
Consider the production function F(L,K) = L^2/3 K^2/3 . (f) Does this production function exhibit increasing, decreasing or constant returns to scale? Explain. (g) Find the total cost, average cost and marginal cost of producing y units of output. Is the average cost increasing or decreasing in y? Is the marginal cost higher or lower than the average cost? Question 2 The production of magic chairs requires only two inputs: seats (S) and legs (L) (no other inputs are required...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2 L 1/2 a. What is the per- worker production function? b. Assuming no population growth or technological progress, find the steady- state capital stock per worker, output per worker, and consumption per worker as a function of the saving rate and the depreciation rate. c. Assume that the depreciation rate is 10 percent per year. Make a table showing steady-state capital per worker, output...
For the following production functions, find the returns to scales. 1. F(K,L)=K^0.3L^0.7 2. F(K,L)=2K+L 3. F(K,L)=KL...
For the following production functions, find the returns to scales. 1. F(K,L)=K^0.3L^0.7 2. F(K,L)=2K+L 3. F(K,L)=KL 4. F(K,L)=K^0.2L^0.3 An explanation on how to do this, would be appreciated!
Given the following Cobb-Douglas production functions: F(L,K) = LK^2 F(L,K) = L^3/4K^1/4 F(L,K) = L^1/2K^1/4 1....
Given the following Cobb-Douglas production functions: F(L,K) = LK^2 F(L,K) = L^3/4K^1/4 F(L,K) = L^1/2K^1/4 1. Determine the returns to scale for each function. 2. For the rest of this exercise assume that the price of labor, w, and the price of capital, r, equal 1: w = r = 1. Find the conditional input demand functions of labor and capital (the cost-minimizing combinations of labor and capital). 3. Now find the cost functions for each of the production functions....
Consider a Cobb-Douglas production function: f(L, K) = 0.5K0.5L0.5. Using this production function, solve a short-run...
Consider a Cobb-Douglas production function: f(L, K) = 0.5K0.5L0.5. Using this production function, solve a short-run profit maximization problem for a fixed capital stock K=4, output price p=8, wage rate w=2, and capital rental rate r=4
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT